
Introduction to 64 
Bit Intel Assembly 

Language Programming 
for Linux 





Introduction to 64 Bit Intel Assembly Language 
Programming for Linux 

Ray Seyfarth 

October 27, 2011 



Ray Seyfarth 
School of Computing 
University of Southern Mississippi 
Hattiesburg, MS 39406 
USA 

Seyfarth, Ray 
Introduction to 64 Bit Intel Assembly Language Programming 
Includes index. 
ISBN-13 :  978-1466470033 
ISBN-10 :  1466470038 

@201 1  Ray Seyfarth 
All rights reserved. This work may not be translated or copied in whole 
or in part without the written permission of the copyright holder, except 
for brief excerpts in connection with reviews or scholarly analyses. 



Preface 

The Intel CPU architecture has evolved over 3 decades from a 16 bit 
CPU with no memory protection, through a period with 32 bit processors 
with sophisticated architectures into the current series of processors which 
support all the old modes of operation in addition to a greatly expanded 
64 bit mode of operation. Assembly textbooks tend to focus on the history 
and generally conclude with a discussion on the 32 bit mode. Students are 
introduced to the concepts of 16 bit CPUs with segment registers allowing 
access to 1 megabyte of internal memory. This is an unnecessary focus 
on the past. 

With the x86-64 architecture there is almost a complete departure 
from the past. Segment registers are essentially obsolete and more reg
ister usage is completely general purpose, with the glaring exception of 
the repeat-string loops which use specific registers and have no operands. 
Both these changes contribute to simpler assembly language program
mmg. 

There are now 16 general purpose integer registers with a few spe
cialized instructions. The archaic register stack of the 8087 has been 
superseded by a well-organized model providing 16 floating point regis
ters with the floating point instructions for the SSE and AVX extensions. 
In fact the AVX extensions even allow a three operand syntax which can 
simplify coding even more. 

Overall the x86-64 assembly language programming is simpler than 
its predecessors. The dominant mode of operation will be 64 bits within 
a few short years. Together these trends indicate that it is time to teach 
64 bit assembly language. 

The focus in this textbook is on early hands-on use of 64 bit assembly 
prograrnmmg. There is no 16 or 32 bit programming and the discussion 

Ill 



IV PREFACE 

of the history is focused on explaining the origin of the old register names 
and the few non-orthogonal features of the instruction set. 

The intention is to get students involved with using the yasm assembler 
and the gdb debugger from the start. There are assignments using the 
computer from the very first chapter. Not every statement will be fully 
understood at this time, but the assignments are still possible. 

The primary target for this book is beginning assembly language pro
grammers and for a gentle introduction to assembly programming, stu
dents should study chapters 1 ,  2, 3, 5, 6, 7, 8, 9, 10 and 1 1 .  Chapter 4 
on memory mapping is not critical to the rest of the book and can be 
skipped if desired. 

Chapters 12 through 1 5  are significantly more in depth. Chapter 
15  is about data structures in assembly and is an excellent adjunct to 
studying data structures in C/C++. The subject will be much clearer 
after exposure in assembly language. 

The final four chapters focus on high performance programming, in
cluding discussion of SSE and AVX programming. 

The author provides PDF slides for classroom instruction along with 
sample code and errata at http:/ /rayseyfarth.com/asm. 

If you find errors in the book or have suggestions for improvement, 
please email the author as ray.seyfarth@gmail.com. 

Thank you for buying the book and I hope you find something inter
esting and worthwhile inside. 



Acknow ledgernents 

No book is created in isolation. This book is certainly no exception. I am 
indebted to numerous sources for information and assistance with this 
book. 

Dr. Paul Carter's PC assembly language book was used by this author 
to study 32 bit assembly language programming. His book is a free PDF 
file downloadable from his web site. This is a 195 page book which covers 
the basics of assembly language and is a great start at 32 bit assembly 
language. 

While working on this book, I discovered a treatise by Drs. Bryant 
and O 'Hallaron of Carnegie Mellon about how gee takes advantage of 
the features of the x86-64 architecture to produce efficient code. Some 
of their observations have helped me understand the CPU better which 
assists with writing better assembly code. Programmers interested in 
efficiency should study their work. 

I found the Intel manuals to be an invaluable resource. They provide 
details on all the instructions of the CPU. Unfortunately the documents 
cover 32 bit and 64 bit instructions together which, along with the huge 
number of instructions, makes it difficult to learn assembly programming 
from these manuals. I hope that reading this book will make a good 
starting point , but a short book cannot cover many instructions. I have 
selected what I consider the most important instructions for general use, 
but an assembly programmer will need to study the Intel manuals (or 
equivalent manuals from AMD) . 

I thank my friends Maggie and Tim Hampton for their editing con
tributions to the book. 

I am indebted to my CSC 203 - Assembly Language class at the 
University of Southern Mississippi for their contributions to this book. 

v 



Vl ACKNOWLEDGEMENTS 

Teaching 64 bit assembly language has uncovered a few mistakes and 
errors in the original Create Space book from July 201 1 .  In particular I 
wish to thank Chris Greene, Evan Stuart and Brandon Wolfe for locating 
errors in the book. 

Last I thank my wife, Phyllis, and my sons, David and Adam, for 
their encouragement and assistance. Phyllis and Adam are responsible 
for the cover design for both this and the Create Space book. 



Contents 

Preface 

Acknowledgements 

1 Introduction 
1 . 1  Why study assembly language? 
1 .2 What is a computer? . . . 

1 .2 . 1  Bytes . . . . . .  . 
1 .2.2 Program execution 

1 .3 Machine language . . .  . 
1 .4 Assembly language . .  . 
1 .5  Assembling and linking 

2 Numbers 

2 . 1  Binary numbers . 
2.2 Hexadecimal numbers 
2.3 Integers . . . . . . .  . 

2 .3 .1 Binary addition . 
2.3.2 Binary multiplication 

2.4 Floating point numbers . . .  
2.4.1 Converting decimal numbers to floats 
2.4.2 Converting floats to decimal . 
2.4.3 Floating point addition . . . 
2.4.4 Floating point multiplication 

3 Computer memory 

3 . 1  Memory mapping . 

Vll 

iii 

v 

1 

2 
4 
4 
4 
5 
6 
8 

11 

1 1  
13  
16 
18 
19 
20 
23 
24 
24 
25 

27 

27 



Vlll 

3.2 Process memory model in Linux 
3.3 Memory example . . . . . .  . 
3.4 Examining memory with gdb 

3.4.1 Printing with gdb 
3.4.2 Examining memory 

4 Memory mapping in 64 bit mode 

4.1  The memory mapping register . 

4.2 Page Map Level 4 . . . . . . . 
4.3 Page Directory Pointer Table 
4.4 Page Directory Table . 
4.5 Page Table . . . . . . . . . . 
4.6 Large pages . . . . . . . . . . 
4. 7 CPU Support for Fast Lookups 

5 Registers 
5 .1  Moving a constant into a register . . . . . . 
5 .2 Moving values from memory into registers . 
5.3 Moving values from a register into memory 
5.4 Moving data from one register to another 

6 A little bit of math 
6 .1  Negation . .  
6.2 Addition . . . . 
6.3 Subtraction . . 
6.4 Multiplication . 

6.5 Division . . . .  
6 .6 Conditional move instructions . 
6 .7 Why move to a register? . . . .  

7 Bit operations 
7.1 Not operation . 
7.2 And operation 
7.3 Or operation 
7.4 Exclusive or operation 
7.5 Shift operations . . . . 
7.6 Bit testing and setting 
7. 7 Extracting and filling a bit field . 

CONTENTS 

28 
30 
32 
32 
34 

37 

37 
38 
39 
39 
39 
40 
40 

43 

45 
46 
49 
49 

5 1  
51  
52 
54 
55 
57 
57 
58 

61 
61 
62 
63 
64 
65 
67 
68 



CONTENTS 

8 Branching and looping 

8.1  Unconditional jump . . . .  
8.2 Conditional jump . . . . . . 

8.2 . 1  Simple if statement . 
8.2.2 If/ else statement . . 
8.2.3 If/else-if/else statement 

8.3 Looping with conditional jumps . 
8 .3 .1 While loops . .  
8.3.2 Do-while loops 
8.3.3 Counting loops 

8.4 Loop instructions . . . 
8.5 Repeat string (array) instructions . 

8.5 . 1  String instructions . . . . .  

9 Functions 

9 .1  The stack 
9.2 Call instruction . .  
9.3 Return instruction 
9.4 Function parameters and return value 
9.5 Stack frames 
9.6 Recursion 

10 Arrays 

10 . 1  Array address computation . . . . . . 
10 .2 General pattern for memory references 
10 .3 Allocating arrays . . . .  . 
10 .4 Processing arrays . . . . . . . . . . .  . 

10.4. 1 Creating the array . . . . . .  . 
10.4.2 Filling the array with random numbers 
10.4.3 Printing the array . . . . . . . . . .  . 
10.4.4 Finding the minimum value . . . . .  . 
10.4.5 Main program for the array minimum 

10.5 Command line parameter array . . . . . . .  . 

11 Floating point instructions 

1 1 . 1  Floating point registers . . . . . . . . . . . . 
1 1 .2 Moving data to/from floating point registers . 

IX 

71 

71 
73 
74 
75 
75 
76 
76 
80 
82 
82 
83 
83 

89 

89 
90 
91  
91  
92 
94 

99 

99 
101 
103 
104 
104 
105 
106 
107 
107 
109 

115 

115  
116 



X 

1 1 .2 . 1  Moving scalars . . .  
1 1 .2.2 Moving packed data 

11.3 Addition . . . . . . . . . .  . 
1 1 .4 Subtraction . . . . . . . . . 
1 1 .5 Multiplication and division 

CONTENTS 

116  
1 17 
1 17 
1 18 
1 19  

1 1 .6 Conversion . . . . . . . . . 1 19 
1 1 .6.1 Converting to a different length floating point . 1 1 9  
1 1 .6.2 Converting floating point to/from integer 120 

1 1 .7 Floating point comparison . . . . 120 
1 1 .8 Mathematical functions . . . . . 121 

1 1 .8 . 1  Minimum and maximum . 122 
1 1 .8.2 Rounding . . 122 
1 1 .8.3 Square roots . 123 

1 1 .9 Sample code . . . . . . 123 
1 1 .9 . 1  Distance in 3D 123 
1 1 .9.2 Dot product of 3D vectors . 124 
1 1 .9.3 Polynomial evaluation 124 

12 System calls 129 
12. 1 32 bit system calls 130 
12.2 64 bit system calls 130 
12 .3 C wrapper functions 131 

12.3 .1 open system call 132 
12.3.2 read and write system calls 133 
1 2.3.3 lseek system call 134 
1 2.3.4 close system call . . . . . . 135 

13 Structs 137 

13 . 1  Symbolic names for offsets . . . . . . . . 138 
1 3.2 Allocating and using an array of structs 140 

14 Using the C stream 1/0 functions 143 

14 . 1  Opening a file . . 1 44 
14.2 fscanf and fprintf 145 
14.3 fgetc and fputc . 1 45 
14.4 fgets and fputs . 146 
14.5 fread and fwrite . 147 



CONTENTS 

14.6 £seek and ftell . 
14.7 £close . . . . . 

15 Data structures 

15 . 1  Linked lists . . . . . . . . . . 
15 . 1 . 1  List node structure . .  
15 . 1 .2 Creating an empty list 
15 . 1 .3 Inserting a number into a list 
15 . 1 .4 Traversing the list . . . . .  . 

15.2 Doubly-linked lists . . . . . . . . . . 
15 .2 .1 Doubly-linked list node structure 
15 .2.2 Creating a new list . . . . . . . 
15 .2.3 Inserting at the front of the list 
15.2.4 List traversal . . . . . . . . . . 

15.3 Hash tables . . . . . . . . . . . . . .  . 
15 .3 .1 A good hash function for integers . 
15.3.2 A good hash function for strings . 
15.3.3 Hash table node structure and array 
15.3.4 Function to find a value in the hash table 
15.3 .5 Insertion code . . . . . . 
15.3.6 Printing the hash table 
15.3.7 Testing the hash table . 

15.4 Binary trees . . . . . . . . . . . 
15.4.1 Binary tree node and tree structures 
15 .4.2 Creating an empty tree . .  . 
15 .4.3 Finding a key in a tree . . .  . 
15.4.4 Inserting a key into the tree . 
15.4.5 Printing the keys in order . .  

16 High performance assembly programming 

16 . 1  General optimization strategies 
16.2 Use a better algorithm 
16.3 Use C or C++ . . . . . . . .  . 
16.4 Efficient use of cache . . . . .  . 
16 .5 Common subexpression elimination . 
16.6 Strength reduction . .  . 
16 .7 Use registers efficiently . . . . . . .  . 

XI 

148 
149 

151 

151 
152 
152 
153 
153 
156 
157 
157 
158 
159 
160 
161 
161  
162 
162 
163 
164 
165 
166 
167 
167 
168 
169 
170 

175 

175 
176 
177 
177 
179 
179 
180 



Xll 

16.8 Use fewer branches . . . . . . . . . .  . 
16.9 Convert loops to branch at the bottom . 
16 . 10Unroll loops . 
16. 1 1Merge loops . . .  . 
16 . 12Split loops . . . .  . 
16 . 13Interchange loops . 
16 . 14Move loop invariant code outside loops . 
16 . 15Remove recursion . . .  . 
16 . 16Eliminate stack frames . . . . . . . . .  . 
16 . 17Inline functions . . . . . . . . . . . . .  . 

CONTENTS 

180 
180 
181 
183 
183 
183 
184 
184 
185 
185 

16 .18Reduce dependencies to allow super-scalar execution 185 
16 .19Use specialized instructions . . . . . . . . . . . . . . 186 

17 Counting bits in an array 189 

17.1 C function . . . . . . . . . . . . . . . . . . . . . 189 
17.2 Counting 1 bits in assembly . . . . . . . . . . . 190 
17.3 Precomputing the number of bits in each byte . 193 
17.4 Using the popcnt instruction . . . . . . . . . . 194 

18 Sobel filter 

18 .1  Sobel in C . 
18.2 Sobel computed using SSE instructions . 

19 Computing Correlation 

19 . 1  C implementation . . . . . . . . . . . .  . 
1 9.2 Implementation using SSE instructions . 
19.3 Implementation using AVX instructions 

A Using gdb 
A . 1  Preparing for gdb . 
A.2 Starting . . . . . . 
A.3 Quitting . . . . .  . 

A .4 Setting break points 
A.5 Running . . . . . . . 
A.6 Printing a trace of stack frames 
A.7 Examining registers 
A.8 Examining memory . . . . . .  . 

. · 

197 

198 
199 

207 

207 
208 
211  

217 
217 
219 
219 
219 
219 
220 
222 
223 



CONTENTS 

B Using scanf and printf 
B.l  scanf . 
B .2  printf . . . . . .  . 

C Using macros in yasm 
C.l Single line macros 
C.2 Multi-line macros . 
C .3 Preprocessor variables 

D Sources for more information 
D .1  yasm user manual . . . . . . . . . . . 
D.2 nasm user manual . . . . . . . . . .  . 
D.3 Dr. Paul Carter's free assembly book . 
D .4 64 bit Machine Level Programming . 
D.5 GDB Manual . . . . 
D.6 DDD Manual . . .  . 
D .  7 Intel Documentation 

Xlll 

225 
225 
227 

229 
229 
230 
232 

233 
233 
233 
233 
233 
234 
234 
234 



XIV CONTENTS 



Chapter 1 

Introduction 

This book is an introduction to assembly language programming for the 
x86-64 architecture of CPUs like the Intel Core processors and the AMD 
Athlon and Opteron processors. While assembly language is no longer 
widely used in general purpose programming, it is still used to produce 
maximum efficiency in core functions in scientific computing and in other 
applications where maximum efficiency is needed. It is also used to per
form some functions which cannot be handled in a high-level language. 

The goal of this book is to teach general principles of assembly lan
guage programming. It targets people with some experience in program
ming in a high level language (ideally C or C++), but with no prior 
exposure to assembly language. 

Assembly language is inherently non-portable and this text focuses 
on writing code for the Linux operating system, due to the free availabil
ity of excellent compilers, assemblers and debuggers .  The instructions 
are the same on x86-64 systems regardless of the operating system and 
BSD and Mac OS /X operating systems use the same function call stan
dards, though there are differences between Windows and Linux along 
with library and system call differences. Differences between assembly 
programming for Windows systems will be detailed as the work unfolds. 

The primary goal of this text is to learn how to write functions callable 
from C or C++ programs. This focus should give the reader an increased 
understanding of how a compiler implements a high level language. This 
understanding will be of lasting benefit in using high level languages. 

A secondary goal of this text is to introduce the reader to using SSE 

1 



2 CHAPTER 1 .  INTRODUCTION 

and AVX instructions. The coming trend is for the size of SIMD registers 
to increase and it generally requires assembly language to take advantage 
of the SIMD capabilities. 

1 . 1  Why study assembly language? 

In a time when the latest fads in programming tend to be object-oriented 
high-level languages implemented using byte-code interpreters, the trend 
is clearly to learn to write portable programs with high reliability in record 
time. It seems that worrying about memory usage and CPU cycles is a 
relic from a by-gone era. So why would anyone want to learn assembly 
language programming? 

Assembly language programming has some of the worst "features" 
known in computing. First, assembly language is the poster child for 
non-portable code. Certainly every CPU has its own assembly language 
and ma;ny of them have more than one. The most common example is the 
Intel CPU family along with the quite similar AMD CPU collection. The 
latest versions of these chips can operate in 16 bit, 32 bit and 64 bit modes. 
In each of these modes there are differences in the assembly language. In 
addition the operating system imposes additional differences. Further 
even the function call interface employed in x86-64 Linux systems differs 
from that used in Microsoft Windows systems. Portability is difficult if 
not impossible in assembly language. 

An even worse issue with assembly language programming is relia
bility. In modern languages like Java the programmer is protected from 
many possible problems like pointer errors. Pointers exist in Java, but the 
programmer can be blissfully unaware of them. Contrast this to assem
bly language where every variable access is essentially a pointer access. 
Furthermore high level language syntax resembles mathematical syntax, 
while assembly language is a sequence of individual machine instructions 
which bears no syntactic resemblance to the problem being solved. 

Assembly language is generally accepted to be much slower to write 
than higher level languages. While experience can increase one's speed, it 
is probably twice as slow even for experts. This makes it more expensive 
to write assembly code and adds to the cost of maintenance. 

So what is good about assembly language? 
The typical claim is that assembly language is more efficient than high 



1 . 1 .  WHY STUDY ASSEMBLY LANGUAGE? 3 

level languages. A skilled assembly language coder can write code which 
uses less CPU time and less memory than that produced by a compiler. 
However modern C and C++ compilers do excellent optimization and 
beginning assembly programmers are no match for a good compiler. The 
compiler writers understand the CPU architecture quite well. On the 
other hand an assembly programmer with similar skills can achieve re
markable results. A good example is the Atlas (Automatically Tuned Lin
ear Algebra Software) library which can achieve over 95% of the possible 
CPU performance. The Atlas matrix multiplication function is probably 
at least 4 times as efficient as similar code written well in C. So, while it is 
true that assembly language can offer performance benefits, it is unlikely 
to outperform C/C++ for most general purpose tasks. Furthermore it 
takes intimate knowledge of the CPU to achieve these gains. In this book 
we will point out some general strategies for writing efficient assembly 
programs. 

One advantage of assembly language is that it can do things not pos
sible in high level languages. Examples of this include handling hardware 
interrupts and managing memory mapping features of a CPU. These 
features are essential in an operating system, though not required for 
application programming. 

So far we have seen that assembly language is much more difficult to 
use than higher level languages and only offers benefits in special cases 
to well-trained programmers. What benefit is there for most people? 

The primary reason to study assembly language is to learn how a 
CPU works. This helps when programming in high level languages. Un
derstanding how the compiler implements the features of a high level 
language can aid in selecting features for efficiency. More importantly 
understanding the translation from high level language to machine lan
guage is fundamental in understanding why bugs behave the way they do. 
Without studying assembly language, a programming language is primar
ily a mathematical concept obeying mathematical laws. Underneath this 
mathematical exterior the computer executes machine instructions which 
have limits and can have unexpected behavior. 



4 CHAPTER 1 .  INTRODUCTION 

1 . 2  What is a computer? 

A computer is a machine for processing bits. A bit is an individual 
unit of computer storage which can take on 2 values: 0 and 1 .  We use 
computers to process information, but all the information is represented 
as bits. Collections of bits can represent characters, numbers, or any 
other information. Humans interpret these bits as information, while 
computers simply manipulate the bits. 

1.2 . 1  Bytes 

Modern computers access memory in 8 bit chunks. Each 8 bit quantity is 
called a "byte" . The main memory of a computer is effectively an array 
of bytes with each byte having a separate memory address. The first byte 
address is 0 and the last address depends on the hardware and software 
m use. 

A byte can be interpreted as a binary number. The binary number 
01010101 equals the decimal number 85. If this number is interpreted as 
a machine instruction the computer will push the value of the rbp register 
onto the run-time stack. The number 85 can also be interpreted as the 
upper case letter "U" . The number 85 could be part of a larger number 
in the computer. The letter "U" could be part of a string in memory. It 's 
all a matter of interpretation. 

1.2 . 2  Program execution 

A program in execution occupies a range of addresses for the instructions 
of the program. The following 12 bytes constitute a very simple program 
which simply exits (with status 5) : 



1 . 3. MACHINE LANGUAGE 5 

Address Value 
4000b0 184 
4000b1 1 
4000b2 0 
4000b3 0 
4000b4 0 
4000b5 187 
4000b6 5 
4000b7 0 
4000b8 0 
4000b9 0 
4000ba 205 
4000bb 128 

The addresses are listed in hexadecimal, though they could have 
started with the equivalent decimal number 4194480. The hexadecimal 
values are more informative in this case, since there are numerous 0 val
ues in the hexadecimal representation. This gives a clue to the way the 
operating system maps a program into memory. Pages of memory begin 
with addresses with the rightmost 3 hexadecimal "digits" equal to 0, so 
the beginning of the 12 byte program is fairly close to the start of a page 
of memory. 

1 .3  Machine language 

Each type of computer has a collection of instructions it can execute.  
These instructions are stored in memory and fetched, interpreted and 
executed during the execution of a program. The sequence of bytes (like 
the previous 12 byte program) is called a "machine language" program. It 
would be quite painful to use machine language. You would have to enter 
the correct bytes for each instruction of your program. You would have 
to know the addresses of all data used in your program. A more realistic 
program would have branching instructions. The address to branch to 
depends on where the computer loads your program into memory when 
it is executed. Furthermore the address to branch to can change when 
you add, delete or change instructions in your program. 

The very first computers were programmed in machine language, but 



6 CHAPTER 1 .  INTRODUCTION 

people soon figured out ways to make the task easier. The first improve
ment is to use words like mov to indicate the selection of a particular in
struction. In addition people started using symbolic names to represent 
addresses of instructions and data in a program. Using symbolic names 
prevents the need to calculate addresses and insulates the programmer 
from changes in the source code. 

1 .4 Assembly language 

Very early in the history of computing (1950s) , programmers developed 
symbolic assembly languages. This rapidly replaced the use of machine 
language, eliminating a lot of tedious work. Machine languages are con
sidered "first-generation" programming languages, while assembly lan
guages are considered "second-generation" . 

Many programs continued to be written in assembly language .after 
the invention of Fortran and Cobol ( "third-generation" languages) in the 
late 1950s. In particular operating systems were typically nearly 100% 
assembly until the creation of C as the primary language for the UNIX 
operating system. 

The source code for the 12 byte program from earlier is listed below: 

Program : exit 

Executes the exit system call 

No input 

Output : only the exit status ($? in the shell)  

segment . text 
global _start 

_start : 
mov eax , 1 
mov ebx , 5  
int Ox80 

1 is the exit syscall number 
the status value to return 
execute a system call 



1 .4. ASSEMBLY LANGUAGE 7 

You will observe the use of ";" to signal the start of comments in this 
program. Some of the comments are stand-alone comments and others are 
end-of-line comments. It is fairly common to place end-of-line comments 
on each assembly instruction. 

Lines of assembly code consist of labels and instructions. A label 
usually starts in column 1, but this is not required. A label establishes 
a symbolic name to the current point in the assembler. A label on a line 
by itself must have a colon after it , while the colon is optional if there is 
more to the line. 

Instructions can be machine instructions, macros or instructions to 
the assembler. Instructions usually are placed further right than column 
1 .  Most people establish a pattern of starting all instructions in the same 
column. 

The statement "segment . text" is an instruction to the assembler 
itself rather than a machine instruction. This statement indicates that the 
data or instructions following it are to be placed in the . text segment or 
section. In Linux this is where the instructions of a program are located. 

The statement "global _start" is another instruction to the assem
bler, called an assembler directive or a pseudo opcode (pseudo-op) . This 
pseudo-op informs the assembler that the label _start is to be made 
known to the linker program when the program is linked. The _start 
function is the most basic "entry point" for a Linux program. When the 
system runs a program it transfers control to the _start function. A 
typical C program has a main function which is called indirectly via a 
_start function in the C library. 

The line beginning with _start is a label. Since no code has been 
generated up to this point, the label refers to location 0 of the program's 
text segment. 

The remaining 3 lines are symbolic opcodes representing the 3 ex
ecutable instructions in the program. The first instruction moves the 
constant 1 into register eax while the second moves the constant 5 into 
register ebx. The final instruction generates a software interrupt num
bered Ox80 which is the way Linux handles 32 bit system calls. (This 
code works on both 32 bit and 64 bit Linux systems.) 



8 CHAPTER 1 .  INTRODUCTION 

1 . 5  Assembling and linking 

We use the yasm assembler to produce an object file from an assembly 
source code file: 

yasm -f elf64 -g dwarf2 -1 exit . lst exit . asm 

The yasm assembler is modeled after the nasm assembler. yasm pro
duces object code which works properly with the gdb and ddd debuggers, 
while nasm did not produce acceptable code for debugging during testing. 
The -f elf64 option selects a 64 bit output format which is compatible 
with Linux and gee. The -g dwarf2 option selects the dwarf2 debugging 
format, which is essential for use with a debugger. The -1 exit . 1st asks 
for a listing file which shows the generated code in hexadecimal. 

The yasm command produces an object file named exit . o ,  which 
contains the generated instructions and data in a form ready to link with 
other code from other object files or libraries. In the case of an assembly 
program with the _start function the linking needs to be done with ld: 

ld -o exit exit . o  

The -o exit option gives a name to the executable file produced by 
ld. Without that option, ld produces a file named a .  out . If the assembly 
program defines main rather than _start, then the linking needs to be 
done using gee: 

gee -o exit exit . o  

In this case gee will incorporate its own version of _start and will 
call main from _start (or indirectly from _start ) . 

You can execute the program using: 

. /exit 



1 . 5. ASSEMBLING AND LINKING 9 

Exercises 

1 .  Enter the assembly language program from this chapter and assem
ble and link it . Then execute the program and enter echo $?.  A 
non-zero status indicates an error. Change the program to yield a 
0 status. 

2. Modify the assembly program to define main rather than _start. 
Assemble it and link it using gee. What is the difference in size of 
the executables? 

3. In C and many other languages, 0 means false and 1 (or non-zero) 
means true. In the shell 0 for the status of a process means success 
and non-zero means an error. Shell if statements essentially use 0 
for true. Why did the writer of the first shell decide to use 0 for 
true? 



10 CHAPTER 1 .  INTRODUCTION 



Chapter 2 

Numbers 

All information in a computer is stored as collections of bits. These bits 
can be interpreted in a variety of ways as numbers. In this chapter we 
will discuss binary numbers, hexadecimal numbers, integers and floating 
point numbers. 

2 . 1  Binary numbers 

We are used to representing numbers in the decimal place-value system. 
In this representation, a number like 1234 means 1 * 103 + 2*  102 +3*  10+4. 
Similarly binary numbers are represented in a place-value system using 0 
and 1 as the "digits" and powers of 2 rather than powers of 10. 

Let's consider the binary number 101011 1 1 .  This is an 8 bit number 
so the highest power of 2 is 27 . So this number is 

10101 1 1 1  = 27 + 25 + 23 + 22 + 2 + 1 

= 128 + 32 + 8 + 4 + 2 + 1 

= 175 

The bits of an 8 bit number are numbered from 0 to 7 with 0 being the 
least significant bit and 7 being the most significant bit. The number 
175 has its bits defined below. 

The conversion from binary to decimal is straightforward. It takes a 
little more ingenuity to convert from decimal to binary. Let 's examine 

11 



12 

bit value 1 I 0 I 1 I 0 I 1 
bit position 7 6 5 4 3 

.CHAPTER 2. NUMBERS 

1 1 I 1 I 
2 1 0 

the number 741 .  The highest power of 2 less than (or equal to) 741 is 
29 = 512. So we have 

741 = 512 + 229 

= 29 + 229 

Now we need to work on 229. The highest power of 2 less than 229 is 
27 = 128 . So we now have 

741 = 512 + 128 + 101 

= 29 + 27 + 101 

The process continues with 101 .  The highest power of 2 less than 101 
is 26 = 64. So we get 

7 41 = 512 + 128 + 64 + 37 

= 29 + 27 + 26 + 37 

Next we can find that 37 is greater than 25 = 32, so 

7 41 = 512 + 128 + 64 + 32 + 5 

= 29 + 2 7 + 26 + 25 + 5 

Working on the 5 we see that 

741 = 512 + 128 + 64 + 32 + 4 + 1 

= 29 + 2 7 + 26 + 25 + 22 + 1 
= 1011 100101 

Below is 741 expressed as a 16 bit integer. 

bit value I o I o I o I o I o I o I 1 I o I 1 I 1 I 1 I o I o I 1 I o I 1 I 
bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 



2.2. HEXADECIMAL NUMBERS 13 

A binary constant can be represented in the yasm assembler by ap
pending "b" to the end of a string of O's and 1 's. So we could represent 
741 as 10 1 1 100101b. 

An alternative method for converting a decimal number to binary is 
by repeated division by 2. At each step, the remainder yields the next 
higher bit. 

Let 's convert 7 41 again. 

division remainder bits 
741/2 370 1 1 
370/2 185 0 01 
185/2 92 1 101 

92/2 46 0 0101 
46/2 23 0 00101 
23/2 11 1 100101 
11/2 5 1 1100101 

5/2 2 1 11100101 
2/2 1 0 011100101 
1/2 0 1 1011100101 

The repeated division algorithm is easier since you don't have to iden
tify (guess?) powers of 2 less than or equal to the number under question. 
It is also easy to program. 

2 .2  Hexadecimal numbers 

Binary numbers are a fairly effective way of representing a string of bits, 
but they can get pretty tedious if the string is long. In a 64 bit computer 
it is fairly common to work with 64 bit integers. Entering a number as 
64 bits followed by a "b" would be tough. Decimal numbers are a much 
more compact representation, but it is not immediately apparent what 
bits are O's and 1 's in a decimal number. Enter hexadecimal. . .  

A hexadecimal number is a number in base 16. So we need "digits" 
from 0 to 15. The digits from 0-9 are just like in decimal. The digits 
from 10-15 are represented by the letters 'A' through 'F' .  We can also 
use lower case letters. Fortunately both yasm and C/C++ represent hex
adecimal numbers using the prefix Ox. You could probably use OX but 
the lower case x tends to make the numbers more visually obvious. 



14 CHAPTER 2. NUMBERS 

Let's consider the value of Oxala. This number uses a which means 
10, so we have 

Oxala  = 10 * 162 + 1 * 16 + 10 

= 10 * 256 + 16 + 10 

= 2586 

Converting a decimal number to hexadecimal follows a pattern like the 
one used before for binary numbers except that we have to find the highest 
power of 1 6  and divide by that number to get the correct "digit" . Let's 
convert 40007 to hexadecimal. The first power of 16 to use is 163 = 4096. 
40007/4096 = 9 with a remainder of 3143, so we have 

40007 = 9 * 163 + 3143 

3143/162 = 3143/256 = 12 with a remainder of 71, so we get 

40007 = 9 * 163 + 12 * 162 + 71 

71/16 = 4 with a remainder of 7, so the final result is 

40007 = 9 * 163 + 12 * 1 62 + 4 * 16 + 7 = Ox9c47 

As with conversion to binary we can perform repeated division and 
build the number by keeping the remainders. 

division remainder hex 
40007/16 2500 7 7 

2500/16 1 56 4 47 
1 56/16 9 12 c47 

9/16 0 9 9c47 

Converting back and forth between decimal and binary or decimal 
and hexadecimal is a bit painful. Computers can do that quite handily, 
but why would you want to convert from decimal to hexadecimal? If 
you are entering a value in the assembler, simply enter it in the form 
which matches your interpretation. If you're looking at the number 1027 
and need to use it in your program, enter it as a decimal number. If you 
want to represent some pattern of bits in the computer, then your choices 



2.2. HEXADECIMAL NUMBERS 15  

are binary and hexadecimal. Binary is pretty obvious to  use, but only 
for fairly short binary strings. Hexadecimal is more practical for longer 
binary strings. 

The bottom line is conversion between binary and hexadecimal is 
all that one normally needs to do. This task is made easier since each 
hexadecimal "digit" represents exactly 4 bits (frequently referred to as 

a "nibble" ) . Consult the table below to convert between binary and 
hexadecimal. 

Hex Binary 
0 0000 
1 0001 
2 0010 
3 001 1  
4 0100 
5 0101 
6 0110 
7 0111  
8 1000 
9 1001 
a 1010 
b 1011 
c 1 100 
d 1 101 
e 1 1 10 
f 1 1 1 1  

Let's now consider converting Ox1a5b to  binary. 1 = 0001 ,  a = 1010,  
5 = 0101 and b = 1011 ,  so we get 

Ox1a5b = 0001 1010 0101  1011  = 00011010010 1 10 1 1b 

Below Ox1a5b is shown with each bit position labeled: 

bit value 

bit position 

lolololtltloltlololtloltl1lolt 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

1 
0 



16 CHAPTER 2. NUMBERS 

2.3 Integers 

On the x86-64 architecture integers can be 1 byte, 2 bytes, 4 bytes, or 8 
bytes in length. Furthermore for each length the numbers can be either 
signed or unsigned: Below is a table listing minimum and maximum 
values for each type of integer. 

Variety Bits Bytes Minimum Maximum 
unsigned 8 1 0 255 

signed 8 1 -128 127 
unsigned 16 2 0 65535 

signed 16 2 -32768 32767 
unsigned 32 4 0 4294967295 

signed 32 4 -2147483648 2147483647 
unsigned 64 8 0 18446744073709551615 

signed 64 8 -9223372036854775808 9223372036854775807 

The range of 64 bit integers is large enough for most needs. Of course 
there are exceptions, like 20! = 51090942171709440000. 

Unsigned integers are precisely the binary numbers discussed earlier. 
Signed integers are stored in a useful format called "two's complement" . 
The first bit of a signed integer is the sign bit. If the sign bit is 0, the 
number is positive. If the sign bit is 1 ,  the number is negative. The most 
obvious way to store negative numbers would be to use the remaining 
bits to store the absolute value of the number. 

31 0 
sign bit value 

Let's consider 8 bit signed integers and what we would get if we used 
the existing circuitry to add 2 such integers. Let's add -1 and 1 .  Well, if 
we store -1 with a sign bit and then the value we would get 

- 1  = 1000 0001 
1 = 00,00 000 1 

-1+1 = 1000 0002 



2.3. INTEGERS 17 

Oops! We end up with -2 rather than 0. 
Let's try storing 8 bit numbers as a sign bit and invert the bits for 

the absolute value part of the number: 

- 1  = 1 1 1 1  1 1 10 
1 = 0000 0001 

-1+1 = 1 1 1 1  1 1 1 1  

Now this is interesting: the result is actually -0, rather than 0. This 
sounds somewhat hopeful. Let's try a different pair of numbers: 

-1  = 1 1 1 1  1 110 
4 = 0000 0 100 

-1+4 = 0000 0010 = 2 

Too bad! It was close. What we need it to add one to the complemented 
absolute value for the number. This is referred to as "two's complement" 
arithmetic. It works out well using the same circuitry as for unsigned 
numbers and is mainly a matter of interpretation. 

So let 's convert -1 to its two's complement format . 

-1  1 for the sign bit 
0000001 for the absolute value 
1 1 1 1 1 10 for the complement 
1 1 1 1 1 1 1  after adding 1 to the complement 

-1  = 1 1 1 1 1 1 1 1  after prefixing the sign bit 

Using two's complement numbers the largest negative 8 bit integer is 
10000000. To convert this back, complement the rightmost 7 bits and add 
1 .  This gives 1 1 1 1 1 1 1  + 1 = 10000000 = 128 , so 10000000 = -128. 
You may have noticed in the table of minimum and maximums that the 
minimum values were all 1 larger in absolute value than the maximums. 
This is due to complementing and adding 1 .  The complement yields a 
string of 1 's and adding 1 to that yields a single 1 with a bunch of O's. 
The result is that the largest value for ann-bit signed integer is 2n-l - 1 
and the smallest value is -2n-l . 

Now let's convert the number -750 to a signed binary number. 

750 = 512 + 128 + 64 + 32 + 8 + 4 + 2 = 101 110 1 110b 



18 CHAPTER 2. NUMBERS 

Now expressing this as a 15 bit binary number (with spaces to help keep 
track of the bits) we get 000 0010 1 1 10 1 1 10 .  Next we invert the bits to 
get 1 1 1  1101  0001 000 1 .  Finally we add 1 and prefix the number with 
the sign bit to get -750 = 1 1 1 1  1 10 1  0001 0010 = OxFD12. 

Next let's convert the hexadecimal value OxFA13 from a 16 bit signed 
integer to a decimal value. Start by converting the rightmost 15 bits 
to binary: 1 11 1010 0001 001 1 .  Then invert the bits: 000 0101  1 1 10 
1 100. Add 1 to get the 2 's complement : 000 0101 1 1 10 1 101 .  Convert 
this to decimal 1024 + 256 + 128 + 64 + 32 + 8 + 4 + 1 = 1517, so OxFA13 
= -1517. 

Let's add -750 and -1517 in binary: 

1 1 1 1  1101  0001 0010 
1 1 1 1  1010 0001 001 1  

1 1 1 1 1  0 1 1 1  0010 0101 

We can ignore the leading 1 bit (a result of a carry) . The 16 bit sum 
is 1 1 1 1  0 1 1 1  0010 0101, which is negative. Inverting the lower-most 15  
bits: 0000 1000 1 101 1010.  Next adding 1 to get the two's complement: 
0000 1000 1 101 1011 .  So the number is 2048+ 128 + 64+16+8+ 2 + 1  = 
2267. So we have -750 + -1517 = -2267. 

2 . 3 . 1  Binary addition 

Performing binary addition is a lot like decimal addition. Let 's add 2 
binary numbers 

1010 1 1 1 1  
+ 1 1010010 

1 

The first pair of bits was easy. Adding the second pair of bits gives a 
value of 2, but 2 = 10b, so we place a 0 on the bottom and carry a 1 

1 
1000 1 1 1 1  

+ 0101 1010 
01 



2.3. INTEGERS 

We continue in the same way: 

1 
1000 1 1 1 1  

+ 0101 1010 
001 

1 
1000 1 1 1 1  

+ 01011010  
1001 

1 
1000 1 1 1 1  

+ 0101 1010 
01001 

1000 1 1 1 1  
+ 0101 1010  

1 1 101001 

2.3.2 Binary multiplication 

19 

Binary multiplication is also much like decimal multiplication. You mul
tiply one bit at a time of the second number by the top number and write 
these products down staggered to the left . Of course these "products" 
are trivial. You are multiplying by either 0 or 1. In the case of 0, you 
just skip it. For 1 bits, you simply copy the top number in the correct 
columns. 

After copying the top number enough times, you add all the partial 
products. Here is an example: 

* 
1010101  

10101  
1010101  

1010101  
1010101  
1 10 1 1 1 1 1001 



20 CHAPTER 2. NUMBERS 

2.4 Floating point numbers 

The x86-64 architecture supports 3 different varieties of floating point 
numbers: 32 bit , 64 bit and 80 bit numbers. These numbers are stored in 
IEEE 754 format . Below are the pertinent characteristics of these types: 

Variety Bits Exponent Exponent Bias Fraction Precision 
float 32 8 127 23 "'7 digits 
double 64 1 1  1023 52 "'16  digits 
long double 80 15 16383 64 19 digits 

The IEEE format treats these different length numbers in the same 
way, but with different lengths for the fields . In each format the highest 
order bit is the sign bit. A negative number has its sign bit set to 1 and 
the remaining bits are just like the corresponding positive number. Each 
number has a binary exponent and a fraction. We will focus on the float 
type to reduce the number of bits involved. 

31 30 23 22 
sign bit exponent 

0 
value 

The exponent for a float is an 8 bit field. To allow large numbers or 
small numbers to be stored, the exponent is interpreted as positive or 
negative. The actual exponent is the value of the 8 bit field minus 127. 
127 is the "exponent bias" for 32 bit floating point numbers. 

The fraction field of a float holds a small surprise. Since 0.0 is defined 
as all bits set to 0, there is no need to worry about representing 0.0 as 
an exponent field equal to 127 and fraction field set to all O's .  All other 
numbers have at least one 1 bit, so the IEEE 754 format uses an implicit 1 
bit to save space. So if the fraction field is 00000000000000000000000, it 
is interpreted as 1 .  00000000000000000000000. This allows the fraction 
field to be effectively 24 bits. This is a clever trick made possible by 
making exponent fields of OxOO and OxFF special. 

A number with exponent field equal to OxOO is defined to be 0. In
terestingly, it is possible to store a negative 0 .  An exponent of OxFF is 
used to mean either negative or positive infinity. There are more details 



2.4. FLOATING POINT NUMBERS 21 

required for a complete description of IEEE 754, but this is sufficient for 
our needs. 

To illustrate floating point data, consider the following assembly file 

segment . data 
zero dd 0 . 0  
one dd 1 . 0  
neg! dd -1 . 0  
a dd 1 .  75 
b dd 122 . 5  
d dd 1 . 1  
e dd 10000000000 . 0  

This is not a program, it is simply a definition of 7 float values in the 
. data segment. The dd command specifies a double word data item. 
Other options include db (data byte) , dw (data word) and dq (data quad
word) . A word is 2 bytes, a double word is 4 bytes and a quad-word is 8 
bytes. 

Now consider the listing file produced by yasm 

1 
2 
3 00000000 00000000 
4 00000004 0000803F 
5 00000008 000080BF 
6 OOOOOOOC OOOOE03F 
7 00000010 OOOOF542 
8 000000 14 CDCC8C3F 
9 00000018 F9021550 

%line 1+1 fp . asm 
[section . data] 
zero dd 0 . 0  
one dd 1 . 0  
neg1 dd - 1 . 0  
a dd 1 .  75 
b dd 122 . 5  
d dd 1 . 1  
e dd 10000000000 . 0  

The zero variable is stored as expected - all 0 bits. The other numbers 
might be a little surprising. Look at one - the bytes are backwards! 
Reverse them and you get 3F800000. The most significant byte is 3F. 
The sign bit is 0. The exponent field consists of the other 7 bits of 
the most significant byte and the first bit of the next byte. This means 
that the exponent field is 127 and the actual binary exponent is 0. The 
remaining bits are the binary fraction field - all O's. Thus the value is 
1 .0 * 2° = 1 .0. 



22 CHAPTER 2. NUMBERS 

There is only 1 negative value shown: -1 .0. It differs in only the sign 
bit from 1 .0 .  

You will notice that 1 .75 and 122.5 have a significant number of O's 
in the fraction field. This is because . 75 and .5 are both expressible as 
sums of negative powers of 2. 

0.75 = 0.5 + 0 .25 = 2-l + 2-2 

On the other hand 1 . 1  is a repeating sequence of bits when expressed in 
binary. This is somewhat similar to expressing 1/1 1 in decimal: 

1/11 = 0.090909 . . . 

Looking at 1 . 1  in the proper order 1 . 1  == Ox3F8CCCCD. The exponent is 
0 and the fraction field in binary is 000 1 1001 1001 1001 1001 10 1 .  It looks 
like the last bit has been rounded up and that the repeated pattern is 
1 100. 

1 . 1 10 = 1 .0001 1001 10011001 1001100 . . '2 

Having seen that floating point numbers are backwards, then you 
might suspect that integers are backwards also. This is indeed true. 
Consider the following code which defines some 32 bit integers 

segment data 
zero dd 0 
one dd 1 
neg1 dd -1 
a dd 175 
b dd 4097 
d dd 65536 
e dd 100000000 

The associated listing file shows the bits generated for each number . 
The bytes are backwards. Notice that 4097 is represented as Ox0 1 100000 
in memory. The first byte is the least significant byte. We would prefer 
to consider this as Ox0000 1001, but the CPU stores least significant byte 
first. 

1 
2 

%line 1+1  int . asm 
[section . data] 



2.4. FLOATING POINT NUMBERS 

3 00000000 00000000 
4 00000004 0 1000000 
5 00000008 FFFFFFFF 
6 OOOOOOOC AFOOOOOO 
7 00000010 0 1 100000 
8 00000014 00000100 
9 00000018 OOE1F505 

zero dd 0 
one dd 1 
neg1 dd -1 
a dd 175 
b dd 4097 
d dd 65536 
e dd 100000000 

2 .4 . 1  Converting decimal numbers t o  floats 

23 

Let 's work on an example to see how to do the conversion. Let 's convert 
-121 .6875 to decimal. 

First let 's note that the sign bit is 1 .  Now we will work on 121 .6875. 
It's fairly easy to convert the integer portion of the number: 121 = 

1 1 1 1001b. Now we need to work on the fraction. 
Let 's suppose we have a binary fraction x = 0 .  abcdefgh, where the 

letters indicate either a 0 or a 1 .  Then 2*x = a .  bcdefgh. This indicates 
that multiplying a fraction by 2 will expose a bit. 

· 

We have 2 x 0.6875 = 1 .375 so the first bit to the right of the binary 
point is 1 .  So far our number is 1 1 1 1001 . 1b .  

Next multiply the next fraction: 2 x 0.375 = 0.75 ,  so the next bit is 
0. We have 1 1 1 1001 . 10b 

Multiplying again: 2 x 0.75 = 1 . 5 ,  so the next bit is 1 .  We now have 
1 1 1 1001 . 101b .  

Multiplying again: 2x0.5 = 1 ,  so the last bit is ! leaving 1 1 1 1001 . 1011b 
So our number -121 .6875 = - 1 1 1 1001 . 1011b .  We need to get this 

into exponential notation with a power of 2 .  

-12 1 .6875 = -1 1 1 1001 . 101 1 

= - 1 . 1 1 10011011 * 26 

We now have all the pieces. The sign bit is 1 ,  the fraction (without 
the implied 1 )  is 1 1100 1 10110000000000000 and the exponent field is 
127+6 = 133 = 10000101.  So our number is 

1 10000101  1 1 1001 10110000000000000. 
Organized into nibbles, this is 1 100 0010 1 1 1 1  0011  0 1 1 0  0000 0000 



24 CHAPTER 2. NUMBERS 

0000 or Oxc2f36000. Of course if you see this in a listing it will be 
reversed: . 0060f3c2. 

2 .4. 2 Converting floats to decimal 

An example will illustrate how to convert a float to a decimal number. 
Let 's work on the float value Ox43263000. 

The sign bit is 0, so the number is positive. The exponent field is 
010000110  which is 134, so the binary exponent is 7. The fraction field 
is 010 0 1 10 001 1  0000 0000 0000 0000, so the fraction with implied 1 
is 1 .  0100 1 10001 1 .  

1 .010011000 1 12 * 27 
= 101001 10.00112 

= 166 + 2-3 + 2-4 

= 166 + 0. 125 + 0.0625 

= 166.1875 

2.4.3 Floating point addition 

In order to add two floating point numbers, we must first convert the 
numbers to binary real numbers. Then we need to align the binary points 
and add the numbers. Finally we need to convert back to floating point . 

Let 's add the numbers 41 .275 and 0.315 .  In hexadecimal these num
bers are Ox4225199a and Ox3ea147ae . Now let 's convert Ox4225199a to 
a binary number with a binary exponent. The exponent field is com
posed of the first two nibbles and a 0 bit from the next nibble. This is 
100001002 = 132, so the exponent is 132 - 127 = 5. The fractional part 
with the understood 1 bit is 

1 .010010100011001 1001 10102 

So we have 

Ox4225 199a = 1 .010010100011001100110102 * 25 

= 101001 .010001 10011001 10102 



2.4. FLOATING POINT NUMBERS 25 

Similarly Ox3ea14 7ae has an exponent field of the first 2 nibbles and 
a 1 from the third nibble. So the exponent field is 0 1 1 1 1 1 012 = 125 
yielding an exponent of -2. The fractional part with the understood 1 bit 
IS 

So we have 

1.010000101000111101011102 

Ox3ea147ae = 1.010000101000111101011102 * 2-2 

= 0.01010000101000111101011102 

Now we can align the numbers and add 
101001 . 01000 1 100 1 10 0 1 1 0 10 

+ 0 . 010 10000 101000 1 1 1 10 1 0 1 1 1 0  
10100 1 . 10010 1 1 10000 1 0 10010101 1 1 0 

Now we have too many bits to store in a 32 bit float . The rightmost 
7 bits will be rounded (dropped in this case) to get 

101001. 100 1011 100001010012  

= 1.0100 1 10 0 1 0 1 1 10000 1010012 * 25 

So the exponent is 5 and the exponent field is again 132. Dropping 
the leading 0, we get Ox42265c29 which is 41.59 (approximately) . 

You should be able to see that we lost some bits of precision on the 
smaller number. In an extreme case we could try to add 1.0 to a number 
like 1038 and have no effect. 

2.4.4 Floating point multiplication 

Floating point multiplication can be performed in binary much like dec
imal multiplication. Let's skip the floating point to/from binary conver
sion and just focus on the multiplication of 7. 5 and 4.375. 

7.5 
* 4.375 

1 1 1 . 1 2  
100. 0 1 1 2  

1 1 1 12 
1 1 1 102 

1 1 1 1 000002 
100000. 1 1012  



26 CHAPTER 2. NUMBERS 

Exercises 

1 .  Convert the following integers to binary. 

a. 37 c. -65 
b. 350 d. -427 

2. Convert the following 16 bit signed integers to decimal. 

a. 0000001010101010b c. Ox0101 
b. 1 1 1 1 1 1 1 1 1 1 101 101b d. Oxffcc 

3 .  Convert the following 16 bit unsigned integers to binary. 

a. Ox015a c. Ox0101 
b. Oxfedc d. Oxacdc 

4 .  Convert the following numbers to 32 bit floating point . 

a. 1 .375 c. -571 .3125 
b. 0.041015625 d. 4091 . 125 

5 .  Convert the following numbers from 32 bit floating point to decimal. 

a. Ox3F82000 c. Ox4F84000 
b. OxBF82000 d. Ox3C86000 

6. Perform the binary addition of 2 unsigned integers below. Show 
each carry as a 1 above the proper position. 

000 100101 1001011  
+1 1 101101 1 1 101011  

7. Perform the binary multiplication of the following unsigned binary 
numbers. Show each row where a 1 is multiplied times the top 
number. You may omit rows where a 0 is multiplied times the top 
number. 

101100 1011  
* 1101 101 

8. Write an assembly "program" (data only) defining data values using 
dw and dd for all the numbers in exercises 1-4. 



Chapter 3 

Computer rnernory 

In this chapter we will discuss how a modern computer performs memory 
mapping to give each process a protected address space and how the 
Linux system manages the memory for a process. A practical benefit 
of this chapter is a discussion of how to examine memory using the gdb 
debugger. 

3 . 1  Memory mapping 

The memory of a computer can be considered an array of bytes. Each 
byte of memory has an address. The first byte is at address 0 ,  the second 
byte at address 1 ,  and so on until the last byte of the computer's memory. 

In modern CPUs there are hardware mapping registers which are used 
to give each process a protected address space. This means that multiple 
people can each run a program which starts at address Ox4004c8 at the 
same time. These processes perceive the same "logical" addresses, while 
they are using memory at different "physical" addresses. 

The hardware mapping registers on an x86-64 CPU can map pages of 
2 different sizes - 4096 bytes and 2 megabytes. Linux uses 2 MB pages 
for the kernel and 4 KB pages for most other uses. In some of the more 
recent CPUs there is also support for 1 GB pages. 

The operation of the memory system is to translate the upper bits of 
the address - from a process's logical address to a physical address. Let's 
consider only 4 KB pages. Then an address is translated based on the 

27 



28 CHAPTER 3. COMPUTER MEMORY 

page number and the address within the page. Suppose a reference is 
made to logical address Ox4000002220. Since 4096 = 212 , the offset 
within the page is the right-most 1 2  bits (Ox220) . The page number 
is the rest of the bits (Oc=x4000002) .  A hardware register (or multiple 
registers) translates this page number to a physical page address, let's say 
Ox780000000. Then the two addresses are combined to get the physical 
address Ox780000220. 

Amazingly the CPU generally performs the translations without slow
ing down and this benefits 

'the users in several ways. The most obvious 
benefit is memory protection. User processes are limited to reading and 
writing only their own pages. This means that the operating system is 
protected from malicious or poorly coded user programs. Also each user 
process is protected from other user processes. In addition to protection 
from writing, users can't read other users' data. 

There are instructions used by the operating system to manage the 
hardware mapping registers. These instructions are not discussed in this 
book. Our focus is on programming user processes. 

So why bother to discuss paging, if we are not discussing the instruc
tions to manage paging? Primarily this improves one's understanding 
of the computer. When you write software which accesses data beyond 
the end of an array, you sometimes get a segmentation fault . However 
you only get a segmentation fault when your logic:al address reaches far 
enough past the end of the array to cause the CPU to reference a page 
table entry which is not mapped into your process. 

3.2 Process memory model in Linux 

In Linux memory for a process is divided into 4 logical regions: text , 
data, heap and stack. The stack is mapped to the highest address of a 
process and on x86-64 Linux this is Ox7fffffffffff or 131  TB. This 
address is selected based on the maximum number of bits allowed in 
logical addresses being 48 bits. This address is 4 7 bits of all 1 bits. The 
decision was made to not use bit 48, since canonical addresses have to 
extend bit 48 through bits 49-63. 

In figure 3.1 we see the arrangement of the various memory segments. 
At the lowest address we have the text segment ( . text for yasm) . This 
segment is shown starting at 0, though both _start and main are at 



3.2. PROCESS MEMORY MODEL IN LINUX 

higher addresses. It appears that the lowest ad
dress in an x86-64 process is Ox400000. The text 
segment does not typically need to grow, so the 
data segment is placed immediately above the text 
segment. Above these two segments are the heap 
and stack segments. 

The data segment starts with the . data seg
ment which contains initialized data. Above that is 
the . bss segment which stands for "block started 
by symbol" . The . bss segment contains data which 
is statically allocated in a process, but is not stored 
in the executable file. Instead this data is allocated 
when the process is loaded into memory. The initial 
contents of the . bss segment are all 0 bits. 

data 

29 

1 3 1TB 

0 

The heap is not really a heap in the sense dis- Figure 3 . 1 :  Process 
cussed in a data structures course. Instead is a dy- memory layout 
namically resizable region of memory which is used 
to allocate memory to a process through functions like malloc in C and 
the new operator in C++. In x86-64 Linux this region can grow to very 
large sizes. The limit is imposed by the sum of physical memory and 
swap space. 

The final segment of a process is the stack segment. This segment is 
restricted in size by the Linux kernel, typically to 16 megabytes. This is 
not a large amount of space, but as long as the programmer avoids putting 
large arrays on the stack it serves the purpose quite well of managing the 
run-time stack keeping track of function calls, parameters, local variables 
and return addresses. 

Given the top of the stack as Ox7fffffffffff and the stack size 
limited to 16  megabytes we see that the lowest valid stack address is 
Ox7fffff000000. The stack automatically grows when needed by the 
operating system responding to a page fault . The operating system rec
ognizes the faulting address as being in the range from Ox7fffff000000 
to Ox7fffffffffff,  which is only used for the stack and allocates a new 
page of memory ( 4096 bytes) to the process . 

This simple memory layout is not entirely accurate. There are shared 
object files which can be mapped into a process after the program is 
loaded which will result in regions in the heap range being used to to 



30 CHAPTER 3. COMPUTER MEMORY 

store instructions and data. This region is also used for mapping shared 
memory regions into a process. 

If you wish to examine the memory used by one of your processes, 
you can execute "cat /proc/999/maps" where 999 needs to be replaced 
by your process id. To see the memory used by your shell process, enter 

cat /proc/$$/maps 

3.3 Memory example 

Here is a sample assembly program with several memory items defined: 

a 
b 
c 
d 
e 
f 

g 
h 
i 

main : 

segment 
dd 
dd 
times 
dw 
db 
db 

segment 
resd 
resd 
resb 

segment 
global 

push 
mov 
sub 

xor 
leave 
ret 

. data 
4 
4 . 4  
10 dd 0 
1 '  2 
Oxfb 
"hello world" , 0 

. bss  
1 
10 
100 

. text 
main 

rbp 
rbp , 
rsp , 

eax , 

rsp 
16  

eax 

let the linker know about main 

set up a stack frame for main 
set rbp to point to the stack fram· 
leave some room for local variable� 
leave rsp on a 16 byte boundary 
set rax to 0 for return value 
undo the stack frame manipulations 

After assembling the program we get the following listing file: 



3.3. MEMORY EXAMPLE 

1 
2 
3 00000000 04000000 
4 00000004 CDCC8C40 
5 00000008 OOOOOOOO<rept> 
6 00000030 01000200 
7 00000034 FB 
8 00000035 68656C6C6F20776F72-
9 00000035 6C6400 

10  
11  
12  00000000 <gap> 
13 00000004 <gap> 
14 0000002C <gap> 
15  
16 
17  
18  
19  00000000 55 
20 00000001 4889E5 
2 1  00000004 4883EC10 
22 00000008 31CO 
23 OOOOOOOA C9 
24 OOOOOOOB C3 

%l ine 1+1 memory . asm 
[section . data] 
a dd 4 
b dd 4 . 4  
c t imes 10 dd 0 
d dw 1 ,  2 
e db Oxfb 
f db "hello world" , 0 

[section . bss] 
g resd 1 
h resd 10 
i resb 100 

[section . text] 
[global main] 
main :  

push rbp 
mov rbp , rsp 
sub rsp , 1 6  
xor eax , eax 
leave 
ret 

31  

You can see from the listing the relative addresses of the defined data 
elements. In the data section we have a double word ( 4 bytes) named a 
at location 0. Notice that the bytes of a are reversed compared to what 
you might prefer. 

Following a is a double word defined as a floating point value named 
b at relative address 4. The bytes for b are also reversed. Consider it as 
Ox408ccccd. Then the sign bit is 0, the exponent field is the rightmost 
7 bits of the "first" byte, Ox40, with the leftmost bit of the next byte,  
Ox8c. So the exponent field is Ox81 = 129,  which is a binary exponent of 
2. The fraction field (with the implied initial 1 bit) is Ox8ccccd. So b = 

1 . 0001100 1 1001 1001 1001 101 * 22 
= 4.4. 

The next data item is the array c defined with the times pseudo-op 
which has 10  double word locations. The relative location for c is 8 and 



32 CHAPTER 3. COMPUTER MEMORY 

c consists of 40 bytes, so the next item after c is at relative address 48 or 
Ox30. 

Following c is the length 2 array d with values 1 and 2. Array d is of 
type word so each value is 2 bytes. Again you can see that the bytes are 
reversed for each word of d. 

The next data item is the byte variable e with initial value Oxfb. 
After e is the byte array f which is initialized with a string. Notice that 
I have added a terminal null byte explicitly to f .  Strings in yasm do not 
end in null bytes. 

After the data segment I have included a bss segment with 3 variables. 
These are listed with their relative addresses as part of the bss segment . 
After linking the bss data items will be loaded into memory beginning 
with g defined by resd op-code which means "reserve" double word. With 
resd the number 1 means 1 double word. The next bss item is h which has 
10 reserved double words. The last bss item is i which has 100 reserved 
bytes. All these data items are shown in the listing with addresses relative 
to the start of the bss segment. They will all have value 0 when the 
program starts. 

3.4 Examining memory with gdb 

In this section we will focus on using the gdb print (p) and examine ( x) 
commands. Print is a simple command which can print some data values 
and is versatile enough to print various forms of C expressions. Examine 
is strictly for printing data from memory and is quite useful for printing 
arrays of various types. 

3 .4 . 1 Printing with gdb 

The format for the p command is either p expression or p/FMT expression 
where FMT is a single letter defining the format of data to print . The for
mat choices are 



3. 4. EXAMINING MEMORY WITH GDB 

letter format 
d decimal (default) 
X hexadecimal 
t binary 
u unsigned 
f floating point 
1 instruction 
c character 
s string 
a address 

Let's see a few commands in action in gdb: 

(gdb) p a 
$32 = 4 
(gdb) p/a &a 
$33 = Ox601018 <a> 
(gdb) p b 
$34 = 1082969293 
(gdb) p/f b 
$35 = 4 . 400000 1 
(gdb) p/a &b 
$36 = Ox60101c <b> 
(gdb) p/x &b 
$37 = Ox60101c 
(gdb) p/a &c 
$39 = Ox601020 <c> 
(gdb) p/a &d 
$40 = Ox601048 <d> 
(gdb) p/a &e 
$41 = Ox60104c <e> 
(gdb) p/a &f 
$42 = Ox60104d <f> 
(gdb) p/a &g 
$43 = Ox601070 <g> 
(gdb) p/a &h 
$45 = Ox601074 <h> 
(gdb) p/a &i 

33  



34 CHAPTER 3. COMPUTER MEMORY 

$46 = Ox60109c <i> 

We see that gdb handles a perfectly. It gets the type right and the 
length. It needs the If option to print b correctly. Notice that a is 
located at address Ox601018 which is 24 bytes after the start of a page 
in memory. gdb will prohibit accessing memory before a, though there is 
no hardware restriction to the previous 24 bytes. We see that the data 
segment variables are placed in memory one after another until f which 
starts at Ox60104d and extends to Oc601058. There is a gap until the bss 
segment which starts with g at address Ox60 1070. The bss data items 
are placed back to back in memory with no gaps. 

3 .4 . 2  Examining memory 

Notice that there are no length specifiers with p. If you want to print 
doubles in memory it could be done with some mental gymnastics with 
p. The examine command handles this job readily. 

The format for examine is x/NFS address where N is a number of 
items to print (default 1 ) ,  F is a single letter format as used in the print 
command and S is the size of each memory location. Unfortunately gdb 
picked some size letters which conflict with some of the size options in 
yasm. Here are the size options: 

letter SIZe bytes 
b byte 1 
h halfword 2 
w word 4 
g giant 8 

Here are some examples of examining memory: 

(gdb) x/w &a 
Ox601018 <a> : Ox4 
(gdb) x/fw &b 
Ox60101c <b> : 4 . 4000001 
(gdb) x/fg &b 
Ox60 101c <b> : 5 . 3505792317228316e-315 
(gdb) x/10dw &c 



3.4. EXAMINING MEMORY WITH GDB 

Ox601020 <c> : 0 0 0 0 
Ox601030 <c+16> : 0 0 0 0 
Ox601040 <c+32> : 0 0 
(gdb) x/2xh &d 
Ox601048 <d> : Ox0001  Ox0002 
(gdb) x/12cb &f 

35 

Ox60104d <f> :  104 ' h ' 10 1  ' e ' 108 ' 1 ' 108 ' 1 ' 1 1 1  ' o ' 32 ' ' 1 19 ' . . .  
Ox601055 <f+8> : 1 14 ' r ' 108 ' 1 ' 100 ' d ' O  ' \000 ' 
(gdb) x/s &f 
Ox60104d <f> : "hello world" 

Things match what you expect if you use the correct format and size. 
I first printed b with the correct size and then with the giant size (8 
bytes) . gdb interpreted 8 bytes of memory starting at the address of b as 
a double getting the wrong exponent and fraction. The use of the count 
field is quite useful for dumping memory. 



36 CHAPTER 3. COMPUTER MEMORY 

Exercises 

1 .  Write a data-only program like the one in this chapter to define an 
array of 10 8 byte integers in the data section, an array of 5 2 byte 
integers in the bss section, and a string terminated by 0 in the data 
section. Use gdb's examine command to print the 8 byte integers in 
hexadecimal, the 2 byte integers as unsigned values, and the string 
as a string. 

2. Assuming that the stack size limit is 16MB, about how large can 
you declare an array of doubles inside a C++ function. Do not use 
the keyword static.  

3. Find out the stack size limit using the ulimi t command in bash. 
If bash is not your shell, simply type in bash to start a sub-shell. 

4. Print the value of rsp in gdb. How many bits are required to store 
this value? 



Chapter 4 

Melllory Inapping in 64 bit 
In ode 

In this chapter we discuss the details of how virtual addresses are trans
lated to physical addresses in the x86-64 architecture. Some of the data 
for translation is stored in the CPU and some of it is stored in memory. 

4. 1 The memory mapping register 

Well the CPU designers named this register "Control Register 3" or just 
CR3. A simplified view of CR3 is that it is a pointer to the top level of 
a hierarchical collection of tables in memory which define the translation 
from virtual addresses (the addresses your program sees) to physical ad
dresses. The CPU retains quite a few page translations internally, but 
let's consider first how the CPU starts all this translation process. 

Somewhere in the kernel of the operating system, an initial hierarchy 
of the translation tables is prepared and CR3 is filled with the address 
of the top level table in the hierarchy. This table is given the illustrious 
name "Page Map Level 4" or PML4. When the CPU is switched to using 
memory mapping on the next memory reference it starts by using CR3 
to fetch the address of PML4. Surely it must retain PML4's address for 
future use. 

37 



38 CHAPTER 4. MEMORY MAPPING IN 64 BIT MODE 

4.2 Page Map Level 4 

A virtual address can be broken into fields like this: 

63-48 47-39 38-30 29-21 20- 1 2  1 1 -0 

unused PML4 page page page page 
index directory directory table offset 

pointer index index 
index 

Here we see that a virtual or logical address is broken into 6 fields. The 
top-most 16 bits are ignored. They are supposed to be a sign extension 
of bit 47, but they are not part of the address translation. Following the 
unused bits are four 9 bit fields which undergo translation and finally a 
12 bit page offset. The result of the translation process will be a physical 
address like Ox7fffff008000 which is combined with the offset (let 's say 
it was OxlfO to yield a physical address of Ox7fffff0081f0. 

Pages of memory are 212 
= 4096 bytes, so the 12 bit offset makes 

sense. What about those 9 bit fields? Well, addresses are 8 bytes so 
you can store 512 addresses in a page and 512 = 29 , so 9 bit fields allow 
storing each of the 4 types of mapping tables in a page of memory. 

Bits 47-39 of a virtual address as used as an index into the PML4 table. 
The PML4 table is essentially an array of 512 pointers. These pointers 
point to pages of memory, so the rightmost 12 bits of each pointer can be 
used for other purposes like indicating whether an entry is valid or not. 
Generally not all entries in the PML4 will be valid. 

Let 's suppose that CR3 has the physical address Ox4ffff000. Then 
let 's suppose that bits 47-39 of our sample address are Ox00 1 ,  then we 
would have an array in memory at Ox4ffff000 and we would access the 
second entry (index 1 )  to get the address of a page directory pointer table 
- Ox3467000. 

PML4 at Ox4ffff000 
0 Ox3466000 

Ox3467000 
2 Ox3 4 68000 

51 1 unused 



4.3. PAGE DIRECTORY POINTER TABLE 

4.3 Page Directory Pointer Table 

39 

The next level in the memory translation hierarchy is the collection of 
page directory pointer tables. Each of these tables is also an array of 
512 pointers. These pointers are to page directory tables. Let 's assume 
that our sample address has the value Ox002 for bits 38-30. Then the 
computer will fetch the third entry of the page directory pointer table to 
lead next to a page directory table at address Ox3588000. 

Page Directory Pointer Table 
at Ox3467000 

0 Ox3587000 
1 unused 

2 Ox3588000 

5 1 1  unused 

4.4 Page Directory Table 

The third level in the memory translation hierarchy is the collection of 
page directory tables. Each of these tables is also an array of 512 pointers, 
which point to page tables. Let's assume that our sample address has the 
value OxOOO for bits 29-21 .  Then the computer will fetch the first entry of 
the page directory table to lead next to a page table at address Ox3678000. 

Page Directory Table 
at Ox3588000 

0 Ox3678000 
1 Ox3579000 
2 unused 

5 1 1  unused 

4.5 Page Table 

The fourth and last level in the memory translation hierarchy is the collec
tion of page tables. Again each of these tables is an array of 512 pointers 



40 CHAPTER 4. MEMORY MAPPING IN 64 BIT MODE 

to pages. Let's assume that our sample address has the value Ox1ff for 
bits 20-12.  Then the computer will fetch the last entry of the page table 
to lead next to a page at address Ox5799000. 

Page Table 
at Ox3 678000 

0 Ox5 788000 
1 Ox5 789000 
2 Ox57 8a000 

5 1 1  Ox5799000 

After using 4 tables we reach the address of the page of memory which 
was originally referenced. Then we can or in the page offset (bits 1 1-0) of 
the original - say Oxfa8. This yields a final physical address of Ox5799fa8. 

4.6 Large pages 

The normal size page is 4096 bytes. The CPU designers have added 
support for large pages using three levels of the existing translation tables. 
By using 3 levels of tables, there are 9 + 12 = 21 bits left for the within 
page offset field. This makes large pages 221 = 2097152 bytes. 

4. 7 CPU Support for Fast Lookups 

This process would be entirely too slow if done every time by traversing 
through all these tables. Instead whenever a page translation has been 
performed, the CPU adds this translation into a cache called a "Trans
lation Lookaside Buffer" or TLB . .  Then hopefully this page will be used 
many times without going back through the table lookup process. 

A TLB operates much like a hash table. It is presented with a vir
tual page address and produces a physical page address or failure within 
roughly 1/2 of a clock cycle. In the case of a failure the memory search 
takes from 10 to 100 cycles. Typical miss rates are from 0.01% to 1%. 

Clearly there is a limit to the number of entries in the TLB for a CPU. 
The Intel Core 2 series has a total of 16 entries in a level 1 TLB and 256 



4. 7. CPU SUPPORT FOR FAST LOOKUPS 41 

entries in a level 2 TLB. The Core i7 has 64 level 1 TLB entries and 512 
level 2 entries. The AMD Athlon II CPU has 1024 TLB entries. 

Given the relatively small number of TLB entries in a CPU it seems 
like it would be a good idea to migrate to allocating 2 MB pages for 
programs. Linux supports the use of 2 MB pages through its HUGETLB 
option. It requires adjusting the system parameters and allocating shared 
memory regions using the SHM__HUGETLB option. This could improve the 
performance of processes using large arrays. 



42 

Exercises 

CHAPTER 4. MEMORY MAPPING IN 64 BIT MODE 

1 .  Suppose you were given the opportunity to redesign the memory 
mapping hierarchy for a new CPU. We have seen that 4 KB pages 
seem a little small. Suppose you made the pages 217 = 131072 
bytes. How many 64 bit pointers would fit in such a page? How 
many bits would be required for the addressing of a page table? 
How would you break up the bit fields of virtual addresses? 

2 .  Having much larger pages seems desirable. Let 's design a memory 
mapping system with 220 

= 1048576 bytes but use partial pages 
for memory mapping tables. Design a system with 3 levels of page 
mapping tables with at least 48 bits of usable virtual address space. 



Chapter 5 

Registers 

Computer memory is essentially an array of bytes which software uses 
for instructions and data. While the memory is relatively fast , there is 
a need for a- small amount of faster data to permit the CPU to execute 
instructions faster. One type of faster memory is cache memory, which 
is perhaps 10 times as fast as main memory. A second type of faster 
memory is the CPU's registers. Cache might be several megabytes, but 
the CPU has only a few registers. 

The x86-64 CPUs have 16 general purpose 64 bit registers and 16 
modern floating point registers. These floating point registers are either 
128 or 256 bits depending on the CPU model and can operate on multiple 
integer or floating point values. There is also a floating point register stack 
which we will not use in this book. The CPU has a 64 bit instruction 
pointer register (rip) which contains the address of the next instruction 
to execute. There is also a 64 bit flags register (rflags ) .  There are 
additional registers which we probably won't use. Having 16 registers 
mean that a register's "address" is only 4 bits. This makes instructions 
using registers much smaller , than if instructions had to use only memory 
addresses. 

The 16 general purpose registers are 64 bit values stored within the 
CPU. Software can access the registers as 64 bit values, 32 bit values, 16 
bit values and 8 bit values. Since the CPU evolved from the 8088 CPU, 
the registers have evolved from 16 bit registers to 32 bit registers and 
finally to 64 bit registers. 

On the 8088 registers were more special purpose than general purpose: 

43 



44 CHAPTER 5. REGISTERS 

• ax - accumulator for numeric operations 

• bx - base register (array access) 

• ex - count register (string operations) 

• dx - data register 

• s i - source index 

• di - destination index 

• bp - base pointer (for function frames) 

• sp - stack pointer 

In addition the 2 halves of the first 4 registers can be accessed using al 
for the low byte of ax, ah for the high byte of ax, and bl , bh , cl , eh , 
dl and dh for the halves of bx , ex and dx. 

When the 386 CPU was designed the registers were expanded to 32 
bits and renamed as eax, ebx, ecx, edx, esi ,  edi, ebp, and esp. Software 
could also use the original names to access to lower 16 bits of each of the 
registers. The 8 bit registers were also retained without allowing access 
to individual bytes of the upper halves of the registers. 

For the x86-64 architecture the registers were expanded to 64 bits 
and 8 additional general purpose registers were added. The names used 
to access the 64 bit registers are rax, rbx, rex, rdx, rsi ,  rdi, rbp, and 
rsp for the compatible collection and r8-r15 for the 8 new registers. As 
you might expect you can still use ax to access the lowest word of the 
rax register along with eax to access the lower half of the register. You 
can also access registers r8-r15 as byte, word, double word registers by 
appending b, w or d to the register name. 

The rflags register is a 64 bit register, but currently only the lower 
32 bits are used, so it is generally sufficient to refer to eflags. In addition 
the flags register is usually not referred to directly. Instead conditional 
instructions are used which internally access 1 or more flags of the flags 
register to determine what action to take. 

Moving data seems to be a fundamental task in assembly language. 
In the case of moving values to/from the integer registers, the basic com
mand is mov. It can move constants, addresses and memory contents into 



5. 1 .  MOVING A CONSTANT INTO A REGISTER 45 

registers, move data from 1 register to another and move the contents of 
a register into memory. 

5 . 1  Moving a constant into a register 

The first type of move is to move a constant into a register. A constant is 
usually referred to as an immediate value. It consists of some bytes stored 
as part of the instruction. Immediate operands can be 1 ,  2 or 4 bytes 
for most instruCtions. The mov instruction also allows 8 byte immediate 
values. 

mov rax , 100 
mov eax , 100 

Surprisingly, these two instructions have the same effect - moving the 
value 100 into rax. Arithmetic operations and moves with 4 byte register 
references are zero-extended to 8 bytes. Below is a gdb session illustrating 
moving constants. 

(gdb) list 2 1 , 24 
2 1  mov rax , Ox1a1a1a1a1a1a1a1a 
22 mov eax , 100 
23 mov rax , Ox1a1a1a1a1a1a1a1a 
24 mov rax , 100 
(gdb) break 2 1  
Breakpoint 1 at Ox400508 : file test . asm , line 2 1 . 
(gdb) run 
Starting program : /home/seyfarth/teaching/asm/test 

Breakpoint 1 ,  main ( )  at test . asm : 21 
2 1  mov rax , Ox1a1a1a1a1a1a1a1a 
(gdb) nexti 
22 mov eax , 100 
(gdb) print/x $rax 
$2 = Ox1a1a1a1a1a1a1a1a 
(gdb) nexti 
23 mov rax , Ox1a1a1a1a1a1a1a1a 
(gdb) print/x $rax 



46 

$3 = Ox64 
(gdb) nexti 
24 mov rax , 100 
(gdb) print/x $rax 
$4 = Ox1a1a1a1a1a1a1a1a 
(gdb) nexti 
25 mov rax , 0 
(gdb) print/x $rax 
$5 = Ox64 

CHAPTER 5. REGISTERS 

You can see that the gdb prompt is (gdb) . The first command entered 
IS "list 2 1 , 24" . This command lists line 21  through 24 of the source 
file. You can abbreviate "list" as "1" . 

The next command is "break 21" , which sets a break point at line 21 .  
"break" can be abbreviated as "b" . A break point is a statement which 
will not be executed when the program in executed. Instead the control 
will be passed back to the debugger. After issuing the "run" command 
the debugger starts running the program, processing instructions until it 
reaches line 21. It breaks there without executing that instruction. 

The next command is "nexti" which means execute the next instruc
tion and return to the debugger. "nexti" can be abbreviated as "ni" . 
After executing that move, the value of register rax is printed in hexadec
imal. "print" can be abbreviated as "p" . The purpose of loading the 
large value is to show that moving to eax is sufficient for small values. 

You can follow the sequence of statements and observe that moving 
100 into eax will clear out the top half of rax. It turns out that a 32 
bit constant is stored in the instruction stream for the moves which move 
100. Also the instruction to move into eax is 1 byte long and the move 
into rax is 3 bytes long. The shorter instruction is preferable. You might 
be tempted to move 100 into al, but this instruction does not clear out 
the rest of the register . 

5 .2  Moving values from memory into registers 

In order to move a value from memory into a register, you must use the 
address of the value. Consider the code below 

segment . data 



5.2. MOVING VALUES FROM MEMORY INTO REGISTERS 47 

a 
b 

dq 
dq 

175 
4097 

The label a is will be replaced by the address of a if included in an 
instruction. Consider the following statement in the . text section. 

mov rax , a 

The instruction has a 32 bit constant field which is replaced with the 
address of a when the program is executed. When tested, the rax register 
received the value Ox601018. 

The proper syntax to get the value of a, 175, is given below: 

mov rax , [a] 

This is technically a different instruction from the other mov. The other 
is " load constant" and the latest one is "load from memory" . 

Let 's throw in an add instruction and do something real. 

segment . data 
a dq 175 
b dq 4097 

segment . text 
global main 

main : 
mov rax , [a] mov a into rax 
add rax, [b] add b to rax 
xor rax , rax 
ret 

You will notice that my main routine calls no other function. There
fore there is no need to establish a stack frame and no need to force the 
stack pointer to be a multiple of 16. Here is the result of running this in 
the debugger. 

(gdb) b main 
Breakpoint 1 at Ox4004c0 : f ile add1 . asm , line 7 .  
(gdb) r 
Start ing program : /home/seyfarth/teaching/asm/add1 



48 CHAPTER 5. REGISTERS 

Breakpoint 1 ,  main ( )  at add1 . asm : 7  
7 mov rax , [a] mov a into rax 
(gdb) n 
8 add rax , [b] add b to rax 
(gdb) p $rax 
$ 1  = 175 
(gdb) n 
9 xor rax , rax 
(gdb) p $rax 
$2  = 4272 
(gdb) p a 
$3 = 175 
(gdb) p b 
$4 = 4097 
(gdb) p a+b 
$5 = 4272 

We see that the correct sum is placed in rax by the add instruction. 
We also see that gdb knows about the labels in the code. It can print a 
and b, and can even compute their sum. Unfortunately the code produced 
by yasm does not inform gdb of the data types, so gdb assumes that the 
variables are double word integers. Still, this ability to print arithmetic 
expressions can be quite convenient . 

There are other ways to move data from memory into a register, but 
this is sufficient for simpler programs. The other methods involve storing 
addresses in registers and using registers to hold indexes or offsets in 
arrays. 

You can move integer values less than 8 bytes in size into a register. 
If you specify a an 8 bit register such as al or a 16  bit register such as ax, 
the remaining bits of the register arc unaffected. However it you specify 
a 32 bit register such as eax, the remaining bits are set to 0 .  This may 
or may not be what you wish. 

Alternatively you can use move and sign extend (movsx) or move and . 
zero extend ( movzx) to control the process. In these cases you would 
use the 64 bit register as a destination and add a length qualifier to the 
instruction. There is one surprise - a separate instruction to move and 
sign extend a double word: movsxd. Here are some examples: 



5.3. MOVING VALUES FROM A REGISTER INTO MEMORY 49 

movsx rax , byte [data] 
movzx rbx , word [sum] 
movsxd rex , dword [count] 

move byte , sign extend 
move word , zero extend 
move dword , sign extend 

5.3 Moving values from a register into memory 

Moving data from a register to memory is very similar to moving from 
memory to a register - you simply swap the operands so that the memory 
address is on the left (destination) . 

mov [a] , rax 

5.4 Moving data from one register to another 

Moving data from one register to another is done as you might expect -
simply place 2 register names as operands to the mov instruction. 

mov rbx , rax ; move value in rax to rbx 



50 CHAPTER 5. REGISTERS 

Exercises 

1 .  Write an assembly program to define 4 integers in the . data section. 
Give two of these integers positive values and 2 negative values. 
Define one of your positive numbers using hexadecimal notation. 
Write instructions to load the 4 integers into 4 different registers 
and add them with the sum being left in a register. Use gdb to 
single-step through your program and inspect each register as it is 
modified. 

2 .  Write an assembly program to define 4 integers - one each of length 
1 ,  2 ,  4 and 8 bytes. Load the 4 integers into 4 registers using sign 
extension for the shorter values. Add the values and store the sum 
in a memory location. 



Chapter 6 

A little bit of math 

So far the only mathematical operation we have discussed is addition. 
With negation, addition, subtraction, multiplication and division it is 
possible to write some interesting programs. For now we will stick with 
integer arithmetic. 

6 . 1  Negation 

The neg instruction performs the two's complement of its operand, which 
can be either a general purpose register or a memory reference. You can 
precede a memory reference with a size specifier from the following table: 

Specifier Size in bytes 
byte 1 
word 2 
dword 4 
qword 8 

The neg instruction sets the sign flag (SF) and the zero flag (ZF) , so 
it is possible to do conditional operations afterwards. 

The following code snippet illustrates a few variations of neg: 

neg 
neg 
neg 

rax 
dword [x] 
byte [x] 

negate the value in rax 
negate a 4 byte integer at x 
negate a byte at x 

51 



52 CHAPTER 6. A LITTLE BIT OF MATH 

6.  2 Addition 

Integer addition is performed using the add instruction. This instruction 
has 2 operands: a destination and a source. It adds the contents of the 
source and the destination and stores the result in the destination. 

The source operand can be an immediate value (constant) of 32 bits, 
a memory reference or a register. The destination can be either a mem
ory reference or a register. Only one of the operands can be a memory 
reference. 

The add instruction sets or clears several flags in the rflags register 
based on the results of the operation. These flags can be used in condi
tional statements following the add. The overflow flag (OF) is set if the 
addition overflows. The sign flag (SF) is set to the sign bit of the result . 
The zero flag (ZF) is set if the result is 0. Some other flags are set related 
to performing binary-coded-decimal arithmetic. 

There is no special add for signed numbers versus unsigned num�ers 
since the operations are the same. There are special signed and unsig'hed 
instructions for division and multiplication. 

There is a special increment instruction ( inc ) , which can be used to 
add 1 to either a register or a memory location. 

Here is a sample program with some add instructions . 

segment . data 
a dq 151  
b dq 310 
sum dq 0 

segment . text 
global main 

main : 
push rbp 
mov rbp , rsp 
sub rsp , 16  
mov rax , 9 set rax to 9 
add [a] ' rax add rax to a 
mov rax , [b] get b into rax 
add rax , 10  add 10 to rax 
add rax , [a] add the contents of a 
mov [sum] , rax save the sum in sum 



6.2. ADDITION 53 

mov rax , 0 
leave 
ret 

Below is a gdb session illustrating this program. 

(gdb) b 1 1  
Breakpoint 1 at Ox4004c8 : f ile add2 . asm , line 1 1 . 
(gdb) run 
Starting program : /home/seyfarth/teaching/asm/add2 

Breakpoint 1 ,  main ( at add2 . asm : 11  
1 1  mov rax , 9 set rax to 9 
(gdb) ni 
12  add [a] , rax add rax to a 
( gdb) p $'rax 
$1  = 9 
(gdb) ni 
13 mov rax , [b] get b into rax 
(gdb) p a 
$2 = 160 
(gdb) ni 
14 add rax , 10 add 10 to rax 
(gdb) p $rax 
$3  = 310 
(gdb) ni 
15 add rax , [a] add the contents of a 
(gdb) p $rax 
$4 = 320 
(gdb) ni 
16  mov [sum] , rax save the sum in sum 
(gdb) p $rax 
$5 = 480 
(gdb) ni 
17 mov 
(gdb) p sum 
$6 = 480 

rax , 0 



54 CHAPTER 6. A LITTLE BIT OF MATH 

6.3 Subtraction 

Integer subtraction is performed using the sub instruction. This instruc
tion has 2 operands: a destination and a source. It subtracts the contents 
of the source from the destination and stores the result in the destination. 

The source operand can be an immediate value (constant) of 32 bits, 
a memory reference or a register. The destination can be either a mem
ory reference or a register. Only one of the operands can be a memory 
reference. 

The sub instruction sets or clears the overflow flag (OF) , the sign flag 
(SF) ,  and the zero flag (ZF) like add. Some other flags are set related to 
performing binary-coded-decimal arithmetic. 

As with addition there is no special subtract for signed numbers versus 
unsigned numbers. 

There is a decrement instruction (dec) which can be used to decrement 
either a register or a value in memory. 

Here is come code with some sub instructions: 

segment . data 
a dq 100 
b dq 200 
diff dq 0 

segment . text 
global main 

main : 
push rbp 
mov rbp , rsp 
sub rsp , 16  
mov rax , 10  
sub [a] ' rax subtract 10 from a 
sub [b] • rax subtract 10 from b 
mov rax , [b] move b into rax 
sub rax , [aJ . set rax to b-a 
mov [diff] ' rax move the difference to diff 
mov rax , 0 
leave 
ret 

Here is a gdb session illustrating the sub instructions: 



6.4. MULTIPLICATION 

(gdb) b 1 1  
Breakpoint 1 at Ox4004c8 : f ile sub . asm , line 1 1 . 
(gdb) run 
Starting program : /home/seyfarth/teaching/asm/sub 

Breakpoint 1 ,  main ( at sub . asm : 1 1  
1 1  mov rax , 10 
(gdb) ni 
12  sub [a] , rax subtract 10 from a 
(gdb) p $rax 
$ 1  = 10 
(gdb) ni 
13 sub [b] , rax subtract 10 from b 
(gdb) p a 
$2 = 90 
(gdb) ni 
14 mov rax , [b] move b into rax 
(gdb) p b 
$3 = 190 
(gdb) ni 
1 5  sub rax , [a] set rax to b-a 
(gdb) p $rax 
$4 = 190 
(gdb) ni 

55 

16  mov [diff] , rax move the difference to diff 
(gdb) p $rax 
$5 = 100 
(gdb) ni 
17 mov rax , 0 
(gdb) p diff 
$6 = 100 

6.4 Multiplication 

Multiplication of unsigned integers is performed using the mul instruc
tion, while multiplication of signed integers is done using imul . The mul 
instruction is fairly simple, but we will skip it in favor of imul. 



56 CHAPTER 6. A LITTLE BIT OF MATH 

The imul instruction, unlike add and sub, has 3 different forms. One 
form has 1 operand (the source operand) , a second has 2 operands (source 
and destination) and the third form has 3 operands (destination and 2 
sources operands) . 

The 1 operand version multiples the value in rax by the source operand 
and stores the result in rdx : rax. The source could be a register or a mem
ory reference. The reason for using 2 registers is that multiplying two 64 
bit integers yields a 128 bit result. Perhaps you are using large 64 bit 
integers and need all 128 bits of the product. Then you need this instruc
tion. The low order bits of the answer are in rax and the high order bits 
are in rdx. 

imul 
mov 
mov 

qword [data] 
[high] , rdx 
[low] , rax 

multiply rax by data 
store upper part of product 
store lower part of product 

Note that yasm requires the quad-word attribute for the source. It 
issued a warning during testing, but did the correct operation. 

Quite commonly 64 bit products are sufficient and either of the other 
forms will allow selecting any of the general purpose registers as the des
tination register. 

The two-operand form allows specifying the source operand as a regis
ter, a memory reference or an immediate value. The source is multiplied 
times the destination register and the result is placed in the destination. 

imul 
imul 
imul 

rax , 100 
r8 , [x] 
r9 , r10 

multiply rax by 100 
multiply rax by x 
multiply r9 by r10 

The three-operand form is the only form where the destination register 
is not one of the factors in the product . Instead the second operand, 
which is either a register or a memory reference, is multiplied by the 
third operand which must be an immediate value. 

imul 
imul 

rbx , [x] , 100 
rdx , rbx , 50 

store 100*x in rbx 
store 50*rbx in rdx 

The carry flag (CF) and the overflow flag (OF) are set when the product 
exceeds 64 bits (unless you explicitly request a smaller multiply) . The 



6. 5. DIVISION 57 

zero flag and sign flags are undefined, so testing for a zero, positive or 
negative result requires an additional operation. 

6 .5  Division 

Division is different from the other mathematics operations in that it 
returns 2 results: a quotient and a remainder. The idi v instruction 
behaves a little like the inverse of the single operand imul instruction in 
that it uses rdx : rax for the dividend. 

The idi v instruction uses a single source operand which can be either 
a register or a memory reference. The unsigned division instruction di v 
operates similarly on unsigned numbers. The dividend is the two registers 
rdx and rax with rdx holding the most significant bits. The quotient is 
stored in rax and the remainder is stored in rdx. 

mov rax , [x] x will be the dividend 
mov rax , 0 0 out rax , so rdx : rax -- rax 
idiv [y] divide by y 
mov [quot] , rax store the quotient 
mov [rem] , rdx store the remainder 

The idi v instruction does not set any status flags, so testing the 
results must be done separately. 

6.6 Conditional move instructions 

There are a collection of conditional move instructions which can be used 
profitably rather than using branching. Branching causes the CPU to 

perform branch prediction which will be correct sometimes and incorrect 
other times. Incorrect predictions slow down the CPU dramatically by 
interrupting the instruction pipeline, so it is worthwhile to learn to use 
conditional move instructions to avoid branching in simple cases. 

The conditional move instructions have operands much like the mov in
struction. There are a variety of them which all have the same 2 operands 
as the mov, except that there is no provision for immediate operands. 



58 

Instruction 
cmovz 
cmovnz 
cmovl 
cmovle 
cmovg 
cmovge 

CHAPTER 6. A LITTLE BIT OF MATH 

effect 
move if zero flag set 
move if zero flag not set (not zero) 
move if result was negative 
move if result was negative or zero 
move if result was positive 
result was positive or zero 

There are lot more symbolic patterns which have essentially the same 
meaning, but these are an adequate collection. 

The following code snippet converts the value in rax to its absolute 
value: 

mov 
neg 
cmovl 

rbx , rax 
rax 
rax , rbx 

save original value 
negate rax 
replace rax if negat ive 

The code below loads a number from memory, subtracts 100 and 
replaces the difference with 0 if the difference is negative: 

mov rbx , 0 set rbx to 0 
mov rax , [x] get x from memory 
add rax , 100 subtract 100 from X 

cmovl rax , rbx set rax to 0 if rax was negative 

6. 7 Why move to a register? 

Both the add and sub instructions can operate on values stored in mem
ory. Alternatively you could explicitly move the value into a register, 
perform the operation and then move the result back to the memory lo
cation. In this case it is 1 instruction versus 3. It 's seems obvious that 1 
instruction is better. 

Now if the value from memory is used in more than 1 operation, it 
might be faster to move it into a register first. This is a simple opti
mization which is fairly natural. It has the disadvantage of requiring the 
programmer to keep track of which variables are in which registers . If 
this code is not going to be executed billions of times, then the time re
quired will probably not matter. In that case don't overwhelm yourself 



6. 7. WHY MOVE TO A REGISTER? 59 

with optimization tricks. If the 2 uses are more than a few instructions 
apart , then keep it simple. 



60 

Exercises 

CHAPTER 6. A LITTLE BIT OF MATH 

1 .  Write an assembly language program to compute the distance squared 
between 2 points in the plane identified as 2 integer coordinates 
each, stored in memory. 

Remember the Pythagorean Theorem! 

2. If we could do floating point division, this exercise would have you 
compute the slope of the line segment connecting 2 points. Instead 
you are to store the difference in x coordinates in 1 memory location 
and the difference in y coordinates in another. The input points are 
integers stored in memory. Leave register rax with the value 1 if 
the line segment it vertical (infinite or undefined slope) and 0 if it 
is not. You should use a conditional move to set the value of rax. 

3. Write an assembly language program to compute the average of 4 
grades. Use memory locations for the 4 grades. Make the grades all 
different numbers from 0 to 100. Store the average of the 4 grades in 
memory and also store the remainder from the division in memory. 

4. Write an assembly language program to compute the cost of elec
tricity for a home. The cost per kilowatt hour will be an integer 
number of pennies stored in a memory location. The kilowatt hours 
used will also be an integer stored in memory. The bill amount will 
be $5 .00 plus the cost per kilowatt hour times the number of kilo
watt hours over 1000. You can use a conditional move to set the 
number of hours over 1000· to 0 if the number of hours over 1000 
is negative. Move the number of dollars into one memory location 
and the number of pennies into another. 



C-hapter 7 

Bit operations 

A computer is a machine to process bits. So far we have discussed using 
bits to represent numbers. In this chapter we will learn about a handful of 
computer instructions which operate on bits without any implied meaning 
for the bits like signed or unsigned integers. 

Individual bits have the values 0 and 1 and are frequently interpreted 
as false for 0 and true for 1. Individual bits could have other interpreta
tions. A bit might mean male or female or any assignment of an entity 
to one of 2 mutually exclusive sets. A bit could represent an individual 
cell in Conway's game of Life. 

Sometimes data occurs as numbers with limited range. Suppose you 
need to process billions of numbers in the range of 0 to 15. Then each 
number could be stored in 4 bits. Is it worth the trouble to store your 
numbers in 4 bits when 8 bit bytes are readily available in a language 
like C++? Perhaps not if you have access to a machine with sufficient 
memory. Still it might be nice to store the numbers on disk in half the 
space. So you might need to operate on bit fields. 

7. 1 Nat operation 

The not operation is a unary operation, meaning that it has only 1 
operand. The everyday interpretation of not is the opposite of a logi
cal statement . In assembly language we apply not to all the bits of a 
word. C has two version of not, " ' "  and "- "  " ! "  is used for the op-

61 



62 CHAPTER 7. BIT OPERATIONS 

posite of true or false, while applies to all the bits of a word. It is 
common to distinguish the two nots by referring to " ! "  as the "logical" 
not and "-" as the "bit-wise" not. We will use "-" since the assembly lan
guage not instruction inverts each bit of a word. Here are some examples, 
illustrating the meaning of not. 

-o == 1 
- 1  == 0 
- 101010 10b == 01010101b 
-oxffOO == OxOOff 

The not instruction has a single operand which serves as both the 
source and the destination. It can applied to bytes, words, double words 
and quad-words in registers or in memory. Here is a code snippet illus
trating its use. 

mov rax , 0 
not rax 
mov rdx , 0 
mov rbx , 15 
div rbx 

not rax 

7.2 And operation 

rax == Oxffffffffffffffff 
preparing for divide 
will divide by 15 (Oxf) 
unsigned divide 
rax -- Ox1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
rax -- Oxeeeeeeeeeeeeeeee 

The and operation is also applied in programming in 2 contexts. First it 
is common to test for both of 2 conditions being true - && in C. Secondly 
you can do an and operation of each pair of bits in 2 variables - & in C. 
We will stick with the single & notation, since the assembly language and 
instruction matches the bit-wise and operation. 

Here is a truth table for the and operation: 

& 0 1 
0 0 0 
1 0 1 

Applied to some bit fields we get : 



7.3. OR OPERATION 

1 1001100b & 0000 1 1 1 1b == 00001100b 
1 1001 100b & 1 1 1 10000b == 1 1000000b 
Oxabcdefab & Oxff == Oxab 

63 

Ox0 123456789abcdef & OxffOOffOOffOOffOO = =  Ox010045008900cd00 

You might notice that the examples illustrate using & as a bit field 
selector. Wherever the right operand has a 1 bit, the operation selected 
the bit from the left operand. You could say the same thing about the 
left operand, but in these examples the right operand has more obvious 
"masks" used to select bits. 

Below is a code snippet illustrating the use of the and instruction: 

mov rax , Ox12345678 
mov rbx , rax 
and rbx , Oxf rbx has the low nibble Ox8 
mov rdx , 0 prepare to divide 
mov rex , 1 6  by 16  
idiv rex rax has Ox1234567 
and rax , Oxf rax has the nibble Ox7 

It is a little sad to use a divide just to shift the number 4 bits to the 
right , but shift operations have not been discussed yet .  

7.3 Or operation 

The or operation is the final bit operation with logical and bit-wise mean
ings. First it is common to test for either (or both) of 2 conditions being 
true - I I  in C .  Secondly you can do an or operation of each pair of bits 
in 2 variables - I in C. We will stick with the single I notation, since the 
assembly language and instruction matches the bit-wise and operation. 

You need to be aware that the "or" of everyday speech is commonly 
used to mean 1 or the other but not both. When someone asks you if 
you want of cup of "decaf" or "regular" , you probably should not answer 
"Yes" . The "or" of programming means one or the other or both. 

Here is a truth table for the or operation: 

0 1 
0 0 1 
1 1 1 



64 CHAPTER 7. BIT OPERATIONS 

Applied to some bit fields we get: 

1 1001 100b I 0000 1 1 1 1b == 1 1001 1 1 1b 
1 1001 100b I 1 1 1 10000b == 1 1 1 1 1 1oob 
Oxabcdefab I Oxff == Oxabcdefff 
Ox0123456789abcdef I OxffOOffOOffOOffOO == Oxff23ff67ffabffef 

You might notice that the examples illustrate using I as a bit setter. 
Wherever the right operand has a 1 bit, the operation sets the correspond
ing bit of the left operand. Again, since or is commutative, we could say 
the same thing about the left operand, but the right operands have more 
obvious masks. 

Here is a code snippet using the or instruction to set some bits: 

mov 
or 
or 

rax , Ox1000 
rax , 1 
rax , OxffOO 

make the number odd 
set bits 1 5-8 

7.4 Exclusive or operation 

The final bit-wise operation is exclusive-or. This operation matches the 
everyday concept of 1 or the other but not both. The C exclusive-or 
operator is "-" . 

Here is a truth table for the exclusive-or operation: 

From examining the truth table you can see that exclusive-or could 
also be called '�not equals" . In my terminology exclusive-or is a "bit
flipper" . Consider the right operand as a mask which selects which bits 
to flip in the left operand. Consider these examples: 

00010001b - 00000001b 00010000b 
01010101b - 1 1 1 1 1 1 1 1b -- 1010101 0b 
0 1 1 101 1 1b - 0000 1 1 1 1b -- 0 1 1 1 1000b 
Oxaaaaaaaa - Oxffffffff -- Ox55555555 
Ox12345678 - Ox12345678 == OxOOOOOOOO 



7.5. SHIFT OPERATIONS 65 

The x86-64 exclusive-or instruction is named xor. The most common 
use of xor is as an idiom for setting a register to 0.  This is done because 
moving 0 into a register requires 7 bytes for a 64 bit register, while xor 
requires 3 bytes. You can get the same result using the 32 bit version of 
the intended register which requires only 2 bytes for the instruction. 

Observe some uses of xor: 

mov rax , Ox1234567812345678 
xor eax , eax set to 0 
mov rax , Ox1234 
xor rax , Oxf change to Ox123b 

7.5 Shift operations 

In the code example for the and instruction I divided by 16 to achieve 
the effect of converting Ox12345678 into Ox1234567. This effect could 
have been obtained more simply by shifting the register's contents to the 
right 4 bits. Shifting is an excellent tool for extracting bit fields and for 
building values with bit fields. 

In the x86-64 architecture there are 4 varieties of shift instructions: 
shift left (shl) , shift arithmetic left (sal) : shift right (shr) , and shift 
arithmetic right (sar) . The shl and sal left instructions are actually 
the same instruction. The sar instruction propagates the sign bit into 
the newly vacated positions on the left which preserves the sign of the 
number, while shr introduces 0 bits from the left. 

15 0 
I• . 1 I 0 I I I 0 I 1 I I I  o l o  I I I o I I I I I o l t i i i o I 

I I l I 0 I 0 I I I 0 I l I I I 0 I I
. I I I 

Figure 7. 1 :  Shifting right 1 bit at a time (shr) 

There are 2 operands for a shift instruction. The first operand is the 
register or memory location to shift and the second is the number of bits 
to shift .  The number to shift can be 8, 16, 32 or 64 bits in length. The 



66 CHAPTER 7. BIT OPERATIONS 

number of bits can be an immediate value or the cl  register. There are 
no other choices for the number of bits to shift .  

C contains a shift left operator ( < <) and a shift right operator ( > >) . 
The decision of logical or arithmetic shift right in C depends on the data 
type being shifted. 

Here are some examples of shifting: 

10101010b >> 2 == 00101010b 
1001 1001b << 4 == 100 1 1 0010000b 
Ox12345678 >> 4 == Ox01234567 
Ox1234567 << 4 == Ox12345670 
Oxabcd >> 8 = =  OxOOab 

To extract a bit field from a word, you first shift the word right until 
the right most bit of the field is in the least significant bit position (bit 
0) and then and the word with a value having a string of 1 bits in bit 0 
through n - 1 where n is the number of bits in the field to extract. For 
example to extract bits 4-7, shift right four bits, and then and with Oxf . 

To place some bits into position, you first need to clear the bits and 
then or the new field into the value. The first step is to build the mask 
with the proper number of l 's for the field width starting at bit 0. Then 
shift the mask left to align the mask with the value to hold the new 
field. Negate the mask to form an inverted mask. And the value with 
the inverted mask to clear out the bits. Then shift the new value left the 
proper number of bits and or this with the value. 

It 's time to see some examples: 

mov rax , Ox12345678 
shr rax , 8 I want bits 8-15 
and rax , Oxff rax now holds Ox56 
mov rax , Ox12345678 I want to replace bits 8-15 
mov rdx , Ox a a rdx holds replacement field 
mov rbx , Oxff I need an 8 bit mask 
shl rbx , 8 Shift mask to align @ bit 8 
not rbx rbx is the inverted mask 
and rax , rbx Now bits 8- 15 are all 0 
shl rdx , 8 shift the new bits to align 
or rax , rdx rax now has Ox1234aa78 



7.6. BIT TESTING AND SETTING 67 

The x86-64 instruction set also includes rotate left (rol) and rotate 
right (ror) instructions. These could be used to shift particular parts of a 
bit string into proper position for testing while preserving the bits. After 
rotating the proper number of bits in the opposite direction, the original 
bit string will be left in the register or memory location. 

7.6 Bit testing and setting 

It takes several instructions to extract or insert a bit field. Sometimes 
you need to extract or insert a single bit. This can be done using masking 
and shifting as just illustrated. However it can be simpler and quicker to 
use the bit test instruction (bt) and either the bit test and set instruction 
(bts) or the bit test and reset instruction (btr) . 

The bt instruction has 2 operands. The first operand is a 16 ,  32 or 
64 bit word in memory or a register which contains the bit to test. The 
second operand is the bit number from 0 to the number of bits minus 
1 for the word size which is either an immediate value or a value in a 
register. The bt instructions set the carry flag ( CF) to the value of the 
bit being tested. 

The bts and btr instructions operate somewhat similarly. Both in- . 
structions test the current bit in the same fashion as bt . They differ in 
that bts sets the bit to 1 and btr sets the bit to 0. 

One particular possibility for using these instructions is to implement 
a set of fairly large size where the members of the set are integers from 0 
to n - 1 where n is the universe size. A membership test translates into 
determining a word and bit number in memory and testing the correct 
bit in the word. Following the bt instruction the setc instruction can be 
used to store the vall.1e of the carry flag into an 8 bit register. There are 
set_ instructions for each of the condition flags in the eflags register. 
Insertion into the set translates into determining the word and bit number 
and using bts to set the correct bit. Removal of an element of the set 
translates into using btr to clear the correct bit in memory. 

In the code below we assume that the memory for the set is at a 
memory location named data and that the bit number to work on is in 
register rax. The code preserves rax and performs testing, insertion and 
removal. 



68 

mov rbx , rax 
shr rbx , 6 
mov rex , rax 
and rex , Ox3f 
xor edx , edx 
bt [data+8*rbx] , rex 
setc dl 
bts [data+8*rbx] ,rcx 
btr [data+8*rbx] , rcx 

CHAPTER 7. BIT OPERATIONS 

copy bit number to rbx 
qword number of data to test 
copy bit number to rex 
extract rightmost 6 bits 
set rdx to 0 
test bit 
edx equals the tested bit 
set the bit , insert into set 
clear the bit , remove 

You will notice the use of data+8*rbx where we have previously used 
only a variable name. The use of a register times 8 allows indexing an ar
ray starting at data in memory. The instruction format includes options 
for multiplying an index register by 2, 4 or 8 to be added to the address 
specified by data. Use 2 for a word array, 4 for a double word array and 
8 for a quad-word array. Register rbx holds the quad-word index into the 
data array. 

Operating on the quad-word of the set in memory as opposed to mov
ing to a register is likely to be the fastest choice, since in real code we 
will not need to test , insert and then remove in 1 function call. We will 
do only one of these operations. 

7. 7 Extracting and filling a bit field 

To extract a bit field you need to shift the field so that its least significant 
bit is in position 0 and then mask the field with an and operation with 
the appropriate mask. Let 's suppose we need to extract bits 23-51 from 
a quad-word stored in a memory location. Then, after loading the quad
word, we need to shift it right 23 bits to get the least significant bit into 
the proper position. The bit field is of length 29. The simplest way to 
get a proper mask (29 1 bits) is using the value Oxlfffffff.  Seven f 's 
is 28 bits and the 1 gives a total of 29 bits. Here is the code to do the 
work: 

mov rax , [sample] move quad-word into rax 
shr rax , 23 shift to align bit 23 at 0 
and rax , Oxlfffffff select the 29 low bits 
mov [field] , rax save the field 



7. 7. EXTRACTING AND FILLING A BIT FIELD 69 

Now suppose we wish to fill in bits 23-51 of sample with the bits in 
field. The easy method is to rotate the value to align the field, shift 
right and then left to clear 29 bits, or in the field, and then rotate the 
register to get the field back into bits 23-51 .  Here is the code: 

mov rax , [sample] move quad-word into rax 
ror rax , 23 rotate to align bit 23 at 0 
shr rax , 29 wipe out 29 bits 
shl rax , 29 move bits back into alignment 
or rax , [f ield] trusting the field is 29 bits 
rol rax , 23 realign the bit f ields 
mov [sample] , rax store the f ields in memory 



70 CHAPTER 7. BIT OPERATIONS 

Exercises 

1. Write an assembly program to count all the 1 bits in a byte stored 
in memory. Use repeated code rather than a loop. 

2 .  Write an assembly program to swap 2 quad-words in memory using 
xor. Use the following algorithm: 

a = a - b 
b = a - b 
a = a - b 

3 .  Write an assembly program to move a quad-word stored in memory 
into a register and then compute the exclusive-or of the 8 bytes 
of the word. Use either ror or rol to manipulate the bits of the 
register so that the original value is retained. 

4. Write an assembly program to dissect a double stored in memory. 
This is a 64 bit floating point value. Store the sign bit in one 
memory location. Store the exponent after subtracting the bias 
value into a second memory location. Store the fraction field with 
the implicit 1 bit at the front of the bit string into a third memory 
location. 

5. Write an assembly program to perform a product of 2 float values 
using integer arithmetic and bit operations. Start with 2 float values 
in memory and store the product in memory. 



Chapter 8 

Branching and looping 

So far we have not used any branching statements in our code. Using 
the conditional move instructions added a little flexibility to the code 
while preserving the CPU's pipeline contents. We have seen that it can 
be tedious to repeat instructions to process each byte in a quad-word or 
each bit in a byte. In the next chapter we will work with arrays. It would 
be fool-hardy to process an array of 1 million elements by repeating the 
instructions. It might be possible to do this, but it would be painful 
coping with variable sized arrays. We need loops. 

In many programs you will need to test for a condition and perform 
one of 2 actions based on the results. The conditional move is efficient 
if the 2 actions are fairly trivial. If each action is several instructions 
long, then we need a conditional jump statement to branch to one alter
native while allowing the CPU to handle the second alternative by not 
branching. After completing the second alternative we will typically need 
to branch around the code for the first alternative. We need conditional 
and unconditional branch statements. 

8 . 1  Unconditional jump 

The unconditional jump instruction (jmp) is the assembly version of the 
goto statement . However there is clearly no shame in using jmp. It is a 
necessity in assembly language, while goto can be avoided in higher level 
languages. 

71 



72 CHAPTER 8. BRANCHING AND LOOPING 

The basic form of the j mp instruction is 

j mp label 

where label is a label in the program's text segment . The assembler 
will generate a rip relative jump instruction. The simplest relative jump 
uses an 8 bit signed immediate value and is encoded in 2 bytes. This 
allows jumping forwards or backwards about 127 bytes. The next variety 
of relative jump in 64 bit mode uses a 32 bit signed immediate value and 
requires a total of 5 bytes. Fortunately the assembler figures out which 
variety it can use and chooses the shorter form. The programmer simply 
specifies a label. 

The effect of the jmp statement is that the CPU transfers control to 
the instruction at the labeled address. This is generally not too exciting 
except when used with a conditional jump. However, the jmp instruction 
can jump to an address contained in a register or memory location. Using 
a conditional move one could manage to use an unconditional jump to 
an address contained in a register to implement a conditional jump. This 
isn't sensible, since there are conditional jump statements which handle 
this more efficiently. 

There is one more possibility which is more interesting - implementing 
a switch statement . Suppose you have a variable i which is known to 
contain a value from 0 to 2. Then you can form an array of instruction 
addresses and use a jmp instruction to jump to the correct section of code 
based on the value of i .  Here is an example: 

segment . data 
switch : dq main . caseO 

dq main . case 1 
dq main . case2 

i ;  dq 2 
segment . t ext 
global main tell l inker about main 

main : 
mov rax , [i] move i to rax 
j mp [swi tch+rax*8] switch ( i ) 

. caseO : 
mov rbx , 100 go here if i -- 0 



8.2. CONDITIONAL JUMP 

jmp . end 
. easel : 

mov rbx , 101  
jmp . end 

. case2 : 
mov rbx , 102 

. end : 
xor eax , eax 
ret 

go here if i -- 1 

go here if i 2 

73 

In this code we have used a new form of label with a dot prefix. These 
labels are referred to as "local" labels. They are defined within the range 
of enclosing regular labels. Basically the local l-abels could be used for all 
labels inside a function and this would allow using the same local labels 
in multiple functions. Also we used main . cas eO outside of main to refer 
to the . cas eO label inside main. 

From this example we see that an unconditional jump instruction 
can be used to implement some forms of conditional jumps. Though 
conditional jumps are more direct and less confusing, in larger switch 
statements it might be advantageous to build an array of locations to 
jump to. 

8.2 Conditional jump 

To use a conditional jump we need an instruction which can set some flags. 
This could be an arithmetic or bit operation. However doing a subtraction 
just to learn whether 2 numbers are equal might wipe out a needed value 
in a register. The x86-64 CPU provides a compare instruction ( cmp) 
which subtracts its second operand from its first and sets flags without 
storing the difference. 

There are quite a few conditional jump instructions with the general 
pattern: 

j CC label ; jump to location 

The CC part of the instruction name represents any of a wide variety of 
condition codes. The condition codes are based on specific flags in eflags 
such as the zero flag, the sign flag, and the carry flag. Below are some 
useful conditional jump instructions. 



74 

instruction 
JZ 
JnZ 
Jg 
Jge 
j l  
j le 
JC 
JnC 

CHAPTER 8. BRANCHING AND LOOPING 

meanmg aliases flags 
jump if zero Je ZF=l 
jump if not zero Jne ZF=O 
jump if > zero jnle ZF=O SF=O ' 

jump if > zero jnl SF=O 
j urn p if < zero Jnge JS SF=l 
jump if < zero Jng ZF=l or SF=l 
jump if carry jb jnae CF=l 
jump if not carry jae jnb CF=O 

It is possible to generate "spaghetti" code using jumps and conditional 
jumps. It is probably best to stick with high level coding structures 
translated to assembly language. The general strategy is to start with 
C code and translate it to assembly. The rest of the conditional jump 
section discusses how to implement C if statements. 

8 . 2 . 1  Simple if statement 

Let's consider how to implement the equivalent of a C simple if statement. 
Suppose we are implementing the following C code: 

if ( a < b ) { 
temp = a ;  
a =  b ;  
b = temp ; 

} 
Then the direct translation to assembly language would be 

mov rax , [a] 
mov rbx , [b] 
cmp rax , rbx 
j ge in_ order 
mov [temp] , rax 
mov [a] ' rbx 
mov [b] , rax 

in_ order : 

You will notice that the if condition was less than, but the conditional 
jump used greater than or equal to. Perhaps it would appeal to you more 



8.2. CONDITIONAL JUMP 75 

to use jnl rather than j ge .  The effect is identical but the less than 
mnemonic is part of the assembly instruction (with not) . You should 
select the instruction name which makes the most sense to you. 

8 . 2 . 2  If/else statement 

It is fairly common to do 2 separate actions based on a test. Here is a 
simple C if statement with an else clause: 

if ( a < b ) { 
max = b ;  

} else { 
max = a ;  

} 

This code is simple enough that a conditional move statement is likely 
to be a faster solution, but nevertheless here is the direct translation to 
assembly language: 

mov rax , [a] 
mov rbx , [b] 
crop rax , rbx 
j nl else 
mov [max] , rbx 
jmp end if  

else : mov [max] , rax 
endif : 

8 . 2 . 3  If/else-if/else statement 

Just as in C/C++ you can have an if statement for the else clause, you 
can continue to do tests in the else clause of assembly code conditional 
statements. Here is a short if/else-if/else statement in C :  

if  ( a < b ) { 
result = 1 ;  

} else if ( a > c ) { 
result = 2 ;  

} else { 



76 

} 

CHAPTER 8. BRANCHING AND LOOPING 

result = 3 ;  

This code is possibly a good candidate for 2 conditional move statements, 
but simplicity is bliss. Here is the assembly code for this: 

mov rax , [a] 
mov rbx , [b] 
cmp rax , rbx 
j nl else_ if 
mov qword [result] , 1 
jmp end if 

else if : 
mov rex , [c] 
cmp rax , rex 
j ng else 
mov qword [result] , 2 
j mp end if 

else : 
mov qword [result] , 3 

endif : 

It should be clear that an arbitrary sequence of tests can be used to 
simulate multiple else-if clauses in C.  

8.3 Looping with conditional jumps 

The jumps and conditional jumps introduced so far have been jumping 
forward. By jumping backwards, it is possible to produce a variety of 
loops. In this section we discuss while loops, do-while loops and counting 
loops. We also discuss how to implement the effects of C 's continue and 
break statements with loops. 

8 . 3 . 1  While loops 

The most basic type of loop is possibly the while loop. It generally looks 
like this in C: 



8.3. LOOPING WITH CONDITIONAL JUMPS 

while  ( condit ion ) { 
statements ; 

} 

77 

C while loops support the break statement which gets out of the loop 
and the continue statement which immediately goes back to the top of 
the loop. Structured programming favors avoiding break and continue. 
However they can be effective solutions to some problems and, used care
fully, are frequently clearer than alternatives based on setting condition 
variables. They are substantially easier to implement in assembly than 
using condition variables and faster. 

Counting 1 bits in a memory quad-word 

The general strategy is to shift the bits of a quad-word 1 bit at a time 
and add bit 0 of the value at each iteration of a loop to the sum of the 
1 bits. This loop needs to be done 64 times. Here is the C code for the 
loop: 

sum = 0 ;  
i = 0 ;  
while ( i < 64 ) { 

sum += data & 1 ;  
data = data >> 1 ;  
i++ ; 

} 

The program below implements this loop with only the minor change 
that values are in registers during the execution of the loop. It would be 
pointless to store these values in memory during the loop . 

segment . data 
data dq Oxfedcba9876543210  
sum dq 0 

segment . text 
global main 

main : 
push rbp 



78 

while : 

mov 
sub 

CHAPTER 8. BRANCHING AND LOOPING 

rbp , rsp 
rsp , 16 

Register usage 

rax : bits being examined 
rbx : carry bit after bt , setc 
rex : loop counter , 0-63 
rdx : sum of 1 bits 

mov rax , [data] 
xor ebx , ebx 
xor ecx , ecx 
xor edx , edx 

cmp rex , 64 
jnl end_ while 
bt rax , 0 
setc bl 
add edx , ebx 
shr rax , 1 
inc rex 
jmp while 

end_while : 
mov [sum] , rdx 
xor eax , eax 
leave 
ret 

The first instruction of the loop is cmp which is comparing i (rex) 
versus 64. The conditional jump selected, jnl ,  matches the inverse of the 

· C condition. Hopefully this is less confusing than using j ge. The last 
instruction of the loop is a jump to the first statement of the loop. This 
is the typical translation of a while loop. 

Coding this in C and running gee -03 -S countbi ts . c yields an 
assembly language file named countbi ts . s which is unfortunately not 
quite matching our yasm syntax. The assembler for gee, gas, uses the 



8.3. LOOPING WITH CONDITIONAL JUMPS 79 

AT&T syntax which differs from the Intel syntax used by yasm. Primarily 
the source and destination operands are reversed and some slight changes 
are made to instruction mnemonics. Here is the loop portion of the 
program produced by gee: 

movq data(%rip) , %rax 
movl $64 , %eex 
xorl %edx , %edx 

. 12 :  
movq %rax , %rsi 
sarq %rax 
andl $1 , %esi 
addq %rsi , %rdx 
subl $1 , %ecx 
j ne . 12 

You will notice that the compiler eliminated one jump instruction by 
shifting the test to the end of the loop. Also the compiler did not do 
a compare instruction. In fact it discovered that the counting up to 64 
of i was not important , only the number of iterations mattered, so it 
decremented down from 64 to 0. Thus it was possible to do a conditional 
jump after the decrement . Overall the compiler generated a loop with 6 
instructions, while the hand-written assembly loop used 8 instructions. 
As stated in the introduction a good compiler is hard to beat . You 
can learn a lot from studying the compiler's generated code. If you are 
interested in efficiency you may be able to do better than the compiler. 
You could certainly copy the generated code and do exactly the same, 
but if you can't improve on the compiler's code then you should stick 
with C.  

There is one additional compiler option, -funroll-all-loops which 
tends to speed up code considerably. In this case the compiler used more 
registers and did 8 iterations of a loop which added up 8 bits in each 
iteration. The compiler did 8 bits in 24 instructions where before it did 
1 bit in 6 instructions. This is about twice as fast. In addition the 
instruction pipeline is used more effectively in the unrolled version, so 
perhaps this is 3 times as fast. 

Optimization issues like loop unrolling are highly dependent on the 
CPU architecture. Using the CPU in 64 bit mode gives 16 general-



80 CHAPTER 8. BRANCHING AND LOOPING 

purpose registers while 32 bit mode gives only 8 registers. Loop unrolling 
is much easier with more registers. Other details like the Intel Core i 
series processors' use of a queue of micro-opcodes might eliminate most 
of the effect of loops interrupting the CPU pipeline. Testing is required 
to see what works best on a particular CPU. 

8 . 3 . 2  D o-while loops 

We saw in the last section that the compiler converted a while loop into a 
do-while loop. The while structure translates directly into a conditional 
jump at the top of the loop and an unconditional jump at the bottom of 
the loop. It is always possible to convert a loop to use a conditional jump 
at the bottom. 

A C do-while loop looks like 

do { 
statements ; 

} while ( condition ) ;  

A do-while always executes the body of the loop at least once. 
Let's look at a program implementing a search in a character array, 

terminated by a 0 byte. We will do an explicit test before the loop to 
not execute the loop if the first character is 0. Here is the C code for the 
loop: 

i = 0 ;  
c = data [i] ; 
if  ( c ! =  0 ) do { 

if ( c == x ) break ; 
i++ ; 
c = data [i] ; 

} while ( c ! =  0 ) ; 
n = c == 0 ? - 1  : i ;  

Here's an assembly implementation of this code: 

data 
n 

section . data 
db 
dq 

1 1hello world11 , 0 
0 



8. 3. LOOPING WITH CONDITIONAL JUMPS 

needle db ' w '  

main : 

while : 

section . text 
global main 

push rbp 
mov rbp , rsp 
sub rsp , 16 

Register usage 

rax : byte of data array 
rbx : byte to search for 
rex : l oop counter , 0-63 . 

mov bl , [needle] 
xor ecx , ecx 
mov al , [data+rcx] 
cmp al , 0 
j z  end_while 

cmp al , bl 
j e  found 
inc rex 
mov al , [data+rcx] 
cmp al , 0 
j nz while 

end while : 
mov rex , - 1  

found : mov [n] , rex 
xor eax , eax 
leave 
ret 

81 

The assembly code looks simpler than the C code. The C code would 
look better with a while loop. The conditional operator in C was not 
necessary in the assembly code, since the conditional jump on finding the 
proper character jumps past the movement of -1 to rex. 



82 CHAPTER 8. BRANCHING AND LOOPING 

It might seem rational to try to use more structured techniques, but 
the only reasons to use assembly are to improve efficiency or to do some
thing which can't be done in a high level language. Bearing that in mind, 
we should try to strike a balance between structure and efficiency. 

8 .  3 .  3 Counting loops 

The normal counting loop in C is the for loop, which can be used to 
implement any type of loop. Let's assume that we wish to do array 
addition. In C we might use 

f or ( i = 0 ;  i < n ;  i++ ) { 
e [i] = a [i] + b [i] ; 

} 

Translated into assembly language this loop might be 

mov rdx , [n] 
xor eex , eex 

for : cmp rex , rdx 
j e  end_ for 
mov rax , [a+rex*8] 
add rax , [b+rcx*8] 
mov [e+rcx*8] , rax 
inc rex 
j mp for 

end for : 

Once again it is possible to do a test on rdx being 0 before executing 
the loop. This could allow the compare and conditional jump statements 
to be placed at the end of the loop. 

8.4 Loop instructions 

There is a loop instruction along with a couple of variants which operate 
by decrementing the rex register and branching until the register reaches 
0 .  Unfortunately, it is about 5 times faster to subtract 1 explicitly from 
rex and use j nz to perform the conditional jump. Furthermore the loop 



8. 5. REPEAT STRING (ARRAY) INSTRUCTIONS 83 

instruction is limited to branching to a 8 bit immediate field, meaning 
that it can branch backwards or forwards about 127 bytes. All in all, it 
doesn't seem to be worth using. 

Despite the forgoing tale of gloom, perhaps you still wish to use loop. 
Consider the following code which looks in an array for the right-most 
occurrence of a specific character: 

mov ecx , [n] 
more : cmp [data+rcx- 1]  , al 

j e  found 
loop more 

found : sub ecx , 1 
mov [loc] , ecx 

8.5 Repeat string (array) instructions 

The x86-64 repeat instruction (rep) repeats a string instruction the num
ber of times specified in the count register (rex) . There are a handful 
of variants which allow early termination based on conditions which may 
occur during the execution of the loop. The repeat instructions allow 
setting array elements to a specified value, copying one array to another, 
and finding a specific value in an array. 

8 . 5 . 1  String instructions 

There are a handful of string instructions. The ones which step through 
arrays are suffixed with b, w, d or q to indicate the size of the array 
elements ( 1 ,  2 ,  4 or 8 bytes) . 

The string instructions use registers rax, rsi and rdi for special 
purposes. Register rax or its sub-registers eax, ax and al are used to 
hold a specific value. Resister rsi is the source index register and rdi is 
the destination index. None of the string instructions need operands. 

All of the string operations working with 1 ,  2 or 4 byte quantities 
are encoded in 1 byte, while the 8 byte variants are encoded as 2 bytes. 
Combined with a 1 byte repeat instruction, this effectively encodes some 
fairly simple loops in 2 or 3 bytes. It is hard to beat a repeat . 



84 CHAPTER 8. BRANCHING AND LOOPING 

The string operations update the source and/ or destination registers 
after each use. This updating is managed by the direction flag (DF) . If 
DF is 0 then the registers are increased by the size of the data item after 
each use. If DF is 1 then the registers are decreased after each use. 

Move 

The movsb instruction moves bytes from the address specified by rsi to 
the address specified by rdi . .  The other movs instructions move 2, 4 
or 8 byte data elements using from [rdi] to [rsi] . The data moved 
is not stored in a register and no flags are affected. After each data 
item is moved, the rdi and rsi registers are advanced 1 ,  2, 4 or 8 bytes 
depending on the size of the data item. 

Below is some code to move 100000 bytes from one array to another: 

Store 

lea rsi ,  [source] 
lea rdi , [destination] 
mov rex , 100000 
rep movsb 

The stosb instruction moves the byte in register al to the address spec
ified by rdi . The other variants move data from ax, eax or rax to mem
ory. No flags are affected. A repeated store can fill an array with a single 
value. You could also use stosb in non-repeat loops taking advantage of 
the automatic destination register updating. 

Here is some code to fill an array with 1000000 double words all equal 
to 1 :  

Load 

mov eax , 1 
mov ecx , 1000000 
lea rdi , [dest inat ion] 
rep stosd 

The lodsb instruction moves the byte from the address specified by rsi to 
the al register. The other variants move more bytes of data into ax, eax 



8. 5. REPEAT STRING (ARRAY) INSTRUCTIONS 85 

or rax. No flags are affected. Repeated loading seems to be of little use. 
However you can use lods instructions in other loops taking advantage 
of the automatic source register updating. 

Here is a loop which copies data from 1 array to another removing 
characters equal to 13 :  

lea rs i ,  [source] 
lea rdi , [dest inat ion] 
mov ecx , 1000000 

more : lodsb 
cmp al , 13 
j e  skip 
stosb 

skip : sub ecx , 1 
jnz more 

Scan 

The scasb instruction searches through an array looking for a byte match
ing the byte in al . It uses the rdi register. Here is an implementation of 
the C strlen function: 

segment . text 
global strlen 

strlen : cld prepare to increment rdi 
mov rex , -1  maximum number of iterations 
xor al , al will scan for 0 
repne scasb repeatedly scan for 0 
mov rax , -2 start at -1 , end 1 past the end 
sub rax , rex 
ret 

The function starts by setting rex to - 1 ,  which would allow quite a 
long repeat loop since the code uses repne to loop. It would decrement 
rex about 264 times in order to reach 0 .  Memory would run out first. 

It just so happens that the Linux C ABI places the first parameter to 
a function in rdi , so strlen starts with the proper address set for the 
scan. The standard way to return a value is to place it in rax, so we 
place the length there. 



86 

Compare 

CHAPTER 8. BRANCHING AND LOOPING 

The empsb instruction compares values of 2 arrays. Typically it is used 
with repe which will continue to compare values until either the count 
in eex reaches 0 or two different values are located. At this point the 
comparison is complete. 

This is almost good enough to write a version of the C stremp func
tion, but stremp expects strings terminated by 0 and lengths are not 
usually known for C strings. It is good enough for memcmp: 

segment . text 
global mememp 

mememp : mov rex , rdx 
repe cmpsb compare until end or difference 
cmp rex , 0 
j z  equal reached the end 
movzx eax , byte [rdi - 1 ]  
movzx ecx , byte [rsi - 1 ]  
sub rax , rex 
ret 

equal : xor eax , eax 
ret 

In the memcmp function the repeat loop advances the rdi and rsi 
registers one too many times. Thus there is a -1 in the move and zero 
extend instructions to get the 2 bytes. Subtraction is sufficient since 
memcmp returns 0 ,  a positive or a negative value. It was designed to be 
implemented with a subtraction yielding the return value. 

Set/ clear direction 

The clear direction cld instruction clears the direction flag to 0, which 
means to process increasing addresses with the string operations. The 
set direction std instruction sets the direction flag to 1 .  Programmers 
are supposed to clear the direction flag before exiting any function which 
sets it. 



8.5. REPEAT STRING (ARRAY) INSTRUCTIONS 

Exercises 

87 

1 .  Write an assembly program to compute the dot product of 2 arrays, 
I .e. 

n - 1  

p = L ai * bi 
i=O 

Your arrays should be double word arrays in memory and the dot 
product should be stored in memory. 

2. Write an assembly program to compute Fibonacci numbers stor
ing all the computed Fibonacci numbers in a quad-word array in 
memory. Fibonacci numbers are defined by 

f ib{O) = 0 

f ib{l)  = 1 

f ib(i) = fib(i - 1 )  + f ib(i - 2) for i >  1 

What is the largest i for which you can compute f ib(i)? 

3. Write an assembly program to sort an array of double words using 
bubble sort . Bubble sort is defined as 

do { 
swapped = false ; 
for ( i = 0 ;  i < n- 1 ;  i++ ) { 

if ( a [i] > a [i+1] } { 
swap a [i] and a [i+1] 
swapped = true ; 

} 
} 

} while ( swapped ) ;  

4. Write an assembly program to determine if a string stored in mem
ory is a palindrome. A palindrome is a string which is the same after 
being reversed, like "refer" . Use at least one repeat instruction. 



88 CHAPTER 8. BRANCHING AND LOOPING 

5 .  Write an assembly program to perform a "find and replace" oper
ation on a string in memory. Your program should have an input 
array and an output array. Make your program replace every oc
currence of "amazing" with "incredible" . 

6. A Pythagorean triple is a set of three integers a, b and c such that 
a2 + b2 = c2 . Write an assembly program to determine if an integer, 
c stored in memory has 2 smaller integers a and b making the 3 
integers a Pythagorean triple. If so, then place a and b in memory. 



Chapter 9 

Functions 

In this chapter we will discuss how to write assembly functions which can 
be called from C or C++ and how to call C functions from assembly. Since 
the C or C++ compiler generally does a very good job of code generation, 
it is usually not important to write complete programs in assembly. There 
might be a few algorithms which are best done in assembly, so we might 
write 90% of a program in C or C++ and write a few functions in assembly 
language. 

It is also useful to call C functions from assembly. This gives your 
assembly programs full access to all C libraries. We will use scanf to 
input values from stdin and we will use print£ to print results. This 
will allow us to write more useful programs. 

9 .1  The stack 

So far we have had little use for the run-time stack, but it is an inte
gral part of using functions. We stated earlier that the stack extends to 
the highest possible address: Ox7fffffffffff.  This is not quite true. 
Inspection of the memory map using "cat /proc/$$/maps" shows the 
top stack address is Ox7fffa6b79000 for my bash process and different 
values for other processes always matching the pattern Ox7fffXXXXXOOO. 
Perhaps this is a result of "stack randomization" which is an attempt to 
avoid rogue code which modifies stack values. 

Items are pushed onto the stack using the push instruction. The effect 

89 



90 CHAPTER 9. FUNCTIONS 

of push is to subtract 8 from the stack pointer rsp and then place the 
value being pushed at that address. Initially the stack pointer would be 
set to Ox7ffffffff000 (or some address ending in 000) by the operating 
system when a process is started. On the first push, rsp would be de
creased to Ox7fffffffeff8 and an 8 byte value would be placed in bytes 
Ox7fffffffeff8 through Ox7fffffffefff . 

Many different values are pushed onto the stack by the operating 
system. These include the environment (a collection of variable names 
and values defining things like the search path) and the command line 
parameters for the program. 

Values can be removed from the stack using the pop instruction. pop 
operates in the reverse pattern of push. It moves the value at the location 
specified by the stack pointer (rsp) to a register or memory location and 
then adds 8 to rsp. 

You can push and pop smaller values than 8 bytes, at some peril. It 
works as long as the stack remains bounded appropriately for the current 
operation. So if you push a word and then push a quad-word, the quad
word push may fail .  It is simpler to push and pop only 8 byte quantities. 

9.  2 Call instruct ion 

The assembly instruction to call a function is call. A typical use would 
be like 

call my_funct ion 

The operand my_function is a label in the text segment of a program. 
The effect of the call instruction is to push the address of the instruction 
following the call onto the stack and to transfer control to the address 
associated with my _function. The address pushed onto the stack is called 
the "return address" . Another way to implement a call would be 

push next_instruction 
jmp my_function 

next_ instruction : 

While this does work, the call instruction has much more capability 
which we will generally ignore. 



9.3. RETURN INSTRUCTION 91 

9.3 Return instruction 

To return from a function you use the ret instruction. This instruction 
pops the address from the top of the stack and transfers control to that 
address. In the previous example next_instruction is the label for the 
return address. 

9.4 Function parameters and return value 

Most function have parameters which might be integer values, floating 
point values, addresses of data values, addresses of arrays, or any other 
type of data or address. The parameters allow us to use a function to 
operate on different data with each call. In addition most functions have 
a return value which is commonly an indicator of success or failure. 

x86-64 Linux uses a function call protocol called the "System V Ap
plication Binary Interface" or System V ABI. Unfortunately Windows 
uses a different protocol called the "Microsoft x64 Calling Convention" . 
In both protocols some of the parameters to functions are passed in regis
ters. Linux allows the first 6 integer parameters to be passed in registers, 
which Windows allows the first 4 (using different registers) . Linux al
lows the first 8 floating point parameters to be passed in floating pointer 
registers xmm0-xmm7, while Windows allows the first 4 floating point pa
rameters to be passed in registers xmm0-xmm3. 

Both Linux and Windows use register rax for integer return values 
and register xmmO for floating point return values. 

Both Linux and Windows expect the stack pointer to be maintained 
on 16 byte boundaries · in memory. This means that the hexadecimal 
value for rsp should end in 0. The reason for this requirement is to 
allow local variables in functions to be placed at 16 byte alignments for 
SSE and AVX instructions. Executing a call would then decrement rsp 
leaving it ending with an 8. Conforming functions should either push 
something or subtract from rsp to get it back on a 16 byte boundary. If 
your function calls any external function, it seems wise to stick with the 
16 byte bounding requirement . 

The first 6 integer parameters in a function under Linux are passed 
in registers rdi , rsi, rdx, rex, r8 and r9, while Windows uses rex, rdx, 
r8 and r9 for the_ first 4 integer parameters. If a function requires more 



92 CHAPTER 9. FUNCTIONS 

parameters, they are pushed onto the stack in reverse order. 
FUnctions like scanf and printf which have a variable number of 

parameters pass the number of floating point parameters in the function 
call using the rax register. 

For 32 bit programs the protocol is different . Registers r8-r15 are 
not available, so there is not much value in passing function parameters 
in registers. These programs use the stack for all parameters. 

We are finally ready for "Hello World!" 

sect ion . data 
msg : db 1 1Hello World ! 11 , 0x0a, O 

section . text 
global main 
extern printf 

main : 
push rbp 
mov rbp , rsp 
lea rdi , [msg] parameter 1 for printf 
xor eax , eax 0 f loating point parameters 
call printf 
xor eax , eax return 0 
pop rbp 
ret 

We use the "load effective address" instruction (lea) to load the effec
tive address of the message to print with printf into rdi . This could also 
be done with mov, but lea allows specifying more items in the brackets 
so that we could load the address of an array element. 

Interestingly when the system starts a program in _start the param
eters to _start are pushed onto the stack. However, the parameters to 
main are in registers like any other C function. 

9 .5  Stack frames 

One of the most useful features of the gdb debugger is the ability to trace 
backwards through the functions which have been called (command bt or 



9.5. STACK FRAMES 93 

backtrace) . To perform this trick each function must keep a pointer in 
rbp to a 2 quad-word object on the stack identifying the previous value of 
rbp along with the return address. You might notice the sequence "push 
rbp, mov rbp , rsp" in the hello world program. The first instruction 
pushes rbp immediately below the return address. The second instruction 
makes rbp point to that object. 

Assuming all functions obey this rule of starting with the standard 2 
instructions, there will be a linked list of objects on the stack - one for 
each function invocation. The debugger can traverse through the list to 
identify the funCtion (based on the location of the return address) called 
and use other information stored in the executable to identify the line 
number for this return address. 

These 2 quad-word objects are simple examples of "stack frames" . 
In functions which do not call other functions (leaf functions) , the local 
variables for the function might all fit in registers. If there are too many 
local variables or if the function calls other functions, then there might 
need to be some space on the stack for these local variables. To allocate 
space for the local variables, you simply subtract from rsp. For example 
to leave 32 bytes for local variables in the stack frame do this: 

push rbp 
mov rbp , rsp 
sub rsp , 32 

Be sure to subtract a multiple of 16 bytes to avoid possible problems with 
stack alignment. 

To establish a stack frame, you use the following 2 instructions at the 
start of a function: 

push rbp 
mov rbp , rsp 

The effect of the these 2 instructions and a possible subtraction from rsp 
can be undone using 

leave 

just before a ret instruction. For a leaf function there is no need to do the 
standard 2 instru�tion prologue and no need for the leave instruction. 



94 CHAPTER 9. FUNCTIONS 

They can also be omitted in general though it will prevent gdb from being 
able to trace backwards though the stack frames. 

When you have local variables in the stack frame it makes sense to 
access these variables using names rather than adding 8 or 16  to rsp. 
This can be done by using yasm's equ pseudo-op. The following sets up 
symbolic names for 0 and 8 for two local variables. 

X 

y 
equ 
equ 

0 
8 

Now we can easily save 2 registers in x and y prior to a function call using 

mov [rsp+x] , r8 
mov [rsp+y] , r9 

With any function protocol you must specify which registers must be 
preserved in a function. For the System V ABI, registers rbx, rbp and 
r12-15 must be preserved, while the Windows calling convention requires 
that registers rbx, rbp, rsi ,  rdi and r12-15 must be preserved. 

9.6  Recursion 

One of the fundamental problem solving techniques in computer program
ming is recursion. A recursive function is a function which calls itself. The 
focus of recursion is to break a problem into smaller problems. Frequently 
these smaller problems can be solved by the same function. So you break 
the problem into smaller problems repeatedly and eventually you reach 
such a small problem that it is easy to solve. The easy to solve problem 
is called a "base case" . Recursive functions typically start by testing to 
see if you have reached the base case or not. If you have reached the base 
case, then you prepare the easy solution. If not you break the problem 
into subproblems and make recursive calls. As you return from recursive 
calls you assemble solutions to larger problems from solutions to smaller 
problems. 

Recursive functions generally require stack frames with local variable 
storage for each stack frame. Using the complete stack frame protocol 
can help in debugging. _ 



9.6. RECURSION 95 

Using the function call protocol it is easy enough to write recursive 
functions. As usual, recursive functions test for a base case prior to 
making a recursive call. 

The factorial function can be defined recursively as 

f(n) = { � * f(n - 1) 
if n <= 1 
if n > 1 

Here is a program to read an integer n, compute n! recursively and print 
n! . 

segment . data 
X dq 0 
scanf format db " %ld" , O  
printf_format db " fact (%ld) = %ld" , Ox0a , O  

segment . t ext 
global main tell linker about main 
global fact tell world about fact 
extern scanf resolve scanf and 
extern printf scanf from libc 

main : 
push rbp 
mov rbp , rsp 
lea rdi , [scanf_format] set arg 1 for scanf 
lea rsi ,  [x] set arg 2 for scanf 
xor eax , eax set rax to 0 
call scanf 
mov rdi , [x] move x for fact call 
call fact 
lea rdi , [printf_format] ; set arg 1 for printf 
mov rsi ,  [x] set arg 2 for printf 
mov rdx , rax set arg 3 to be x !  
xor eax , eax set rax to 0 
call printf 
xor eax , eax set return value to 0 
leave 
ret 



96 

fact : 
n 

greater : 

equ 
push 
mov 
sub 
cmp 
j g  
mov 
leave 
ret 

mov 
dec 
call 
mov 
imul 
leave 
ret 

8 
rbp 
rbp , rsp 
rsp , 16 
rdi , 1 
greater 
eax , 1 ·  

[rsp+n] , rdi 
rdi 
fact 
rdi , [rsp+n] 
rax , rdi 

CHAPTER 9. FUNCTIONS 

re cursive function 

make room for storing n 
compare argument with 1 
if  n <= 1 ,  return 1 
set return value to 1 

save n 
call fact with n-1 

restore original n 
multiply fact (n-1 ) *n 

You will notice that I have set rax prior to calling scanf and printf .  
The value of rax is  the number of floating point parameters when you 
make a call to a function with a variable number of parameters. 

In the fact function I have used an equate for the variable n. The 
equ statement defines the label n to have the value 8. In the body of the 
function I save the value of n on the stack prior to making a recursive 
call. The reference [rsp+n] is equivalent to [rsp+8] , but it allows more 
flexibility in coding while being clearer. 



9.6. RECURSION 97 

Exercises 

1 .  Write an assembly program to produce a billing report for an electric 
company. It should read a series of customer records using scanf 
and print one output line per customer giving the customer details 
and the amount of the bill. The customer data will consist of a name 
(up to 64 characters not including the terminal 0) and a number 
of kilowatt hours per customer. The number of kilowatt hours is 
an integer. The cost for a customer will be $20.00 if the number of 
kilowatt hours is less than or equal to 1000 or $20.00 plus 1 cent 
per kilowatt hour over 1000 if the usage is greater than 1000. Use 
quotient and remainder after dividing by 100 to print the amounts 
as normal dollars and cents. Write and use a function to compute 
the bill amount (in pennies) . 

2. Write an assembly program to generate an array of random integers 
(by calling the C library function random) , to sort the array using 
a bubble sort function and to print the array. The array should be 
stored in the . bss segment and does not need to be dynamically 
allocated. The number of elements to fill, sort and print should 
be stored in a memory location. Write a function to loop through 
the array elements filling the array with random integers. Write a 
function to print the array contents. If the array size is less than or 
equal to 20, call your print function before and after printing. 

3. A Pythagorean triple is a set of three integers a , b and c such 
that a2 + b2 = c2 . Write an assembly program to print all the 
Pythagorean triples where c <= 500. Use a function to test whether 
a number is a Pythagorean triple. 

4. Write an assembly program to keep track of 10 sets of size 1000000. 
Your program should read accept the following commands: add, 
union, print and quit. The program should have a function to 
read the command string and determine which it is and return 0, 1 ,  
2 or 3 depending on the string read. After reading add your program 
should read a set number from 0 to 9 and an element number from 
0 to 999999 and insert the element into the proper set . You need 
to have a fu:p.ction to add an element to a set. After reading union 



98 CHAPTER 9. FUNCTIONS 

your program should read 2 set numbers and make the first set be 
equal to the union of the 2 sets. You need a set union function. 
After reading print your program should print all the elements of 
the set. You can assume that the set has only a few elements. After 
reading quit your program should exit . 

5 .  A sequence of numbers is called bitonic if it consists of an increasing 
sequence followed by a decreasing sequence or if the sequence can 
be rotated until it consists of an increasing sequence followed by a 
decreasing sequence. Write an assembly program to read a sequence 
of integers into an array and print out whether the sequence is 
bitonic or not . The maximum number of elements in the array 
should be 100 .  You need to write 2 functions: one to read the 
numbers into the array and a second to determine whether the 
sequence is bitonic. Your bitonic test should not actually rotate the 
array. 

6. Write an assembly program to read two 8 byte integers with scanf 
and compute their greatest common divisor using Euclid's algo
rithm, which is based on the recursive definition 

d ( b) { a if b = 0 
gc a, . gcd(b, a mod b) otherwise 

7. Write an assembly program to read a string of left and right paren
theses and determine whether the string contains a balanced set of 
parentheses. You can read the string with scanf using "%79s" into 
a character array of length 80. A set of parentheses is balanced if 
it is the empty string or if it consists of a left parenthesis followed 
by a sequence of balanced sets and a right parenthesis. Here's an 
example of a balanced set of parentheses: " ( ( ( )  ( )  ) ( )  ) " . 



Chapter 1 0  

Arrays 

An array is a contiguous collection of memory cells of a specific type. This 
means that an array has a start address. The start address is the lowest 
address in the array and is identified by the label used when defining an 
array in the text or bss segment. 

Elements of the array are accessed by index with the smallest index 
being 0 as in C. Subsequent indices access higher memory addresses. The 
final index of an array of size n is n- 1 .  

It would be possible to define arrays with different starting indices. 
In fact the default for Fortran is for arrays to start at index 1 and you 
can define the range of indices in many high level languages. However it 
is quite natural to use 0 as the first index for arrays. The assembly code 
is simpler in this way which helps with efficiency in C artd C++. 

10. 1 Array address computation 

There can be arrays of many types of data. These include the basic types: 
bytes, words,  double words, and quad-words. We can also have arrays of 
structs (defined later) . 

Array elements are of a specific type so each array element occupies 
the same number of bytes of memory. This makes it simple to compute 
the location of any array element . Suppose that the array a with base 
address base uses m bytes per element, then element a [i] is located at 
base + i*m. 

99 



100 CHAPTER 10. ARRAYS 

Let's illustrate the indexing of arrays using the following program: 

a 
b 

c 

main : 

segment 
resb 
resd 
align 
resq 
segment 
global 

push 
mov 
sub 
leave 
ret 

. bss 
100 
100 
8 
100 

. text 
main let the linker know about main 

rbp 
rbp , rsp 
rsp , 16  

The program has 3 arrays of different types. We will run gdb and 
print addresses of various array elements to see the effect . Unfortunately 
gdb is unaware of the types of variables. It know the location of variables 
a, b and c by name and, without knowing the type, it assumes that each 
is a double word integer. To overcome this problem I have written scripts 
named yld and ygcc to use instead of ld and gee to link programs. These 
scripts prepare macros for gdb which will be automatically loaded when 
invoking gdb using the ygdb script. 

Here is ygdb session: 

(gdb) p a 
$ 1  = (unsigned char * )  Ox60 10d8 " "  
(gdb) p &a [1] 
$2 = (unsigned char * )  Ox60 10d9 11 11 

(gdb) p &a [2] 
$3 = (unsigned char *) Ox6010da 11 11 

(gdb) p b 
$4 = (int * )  Ox601 13c 
(gdb) p &b [1]  
$5 = ( int *) Ox601 140 
(gdb) p &b [2] 
$6 = ( int *) Ox60 1 144 



10.2. GENERAL PATTERN FOR MEMORY REFERENCES 101 

(gdb) p c 
$7 = (long * )  Ox6012d0 
(gdb) p &c [1]  
$8 = (long *)  Ox6012d8 
(gdb) p &c [2] 
$9 = (long * )  Ox6012e0 

The macros used by ygdb essentially treat every variable as an array. 
When we use "p a" , it prints the address of a. You can see from the first 
3 results that the elements of a are at 1 byte intervals in memory. Next 
we see the same pattern repeated for array b which is an array of double 
words (int in C and gdb) and that the array elements are placed at 4 byte 
intervals in memory. Finally we see the results for inspecting c which is 
an array of quad-word integers (long in C and gdb) and that these array 
elements are placed at 8 byte intervals. 

10.2 General pattern for memory references 

So far we have used array references in sample code without discussing 
the options for memory references. A memory reference can be expressed 
as 

[label] the value contained at label 

[label +2* ind] the value contained at the memory address obtained by 
adding the label and index register times 2 

[label+4*ind] the value contained at the memory address obtained by 
adding the label and index register times 4 

[label +8*ind] the value contained at the memory address obtained by 
adding the label and index register times 8 

[reg] the value contained at the memory address in the register 

[reg+k*ind] the value contained at the memory address obtained by 
adding the register and index register times k 

[label +reg+k*ind] the value contained at the memory address obtained 
by adding the label, the register and index register times k 



102 CHAPTER 10. ARRAYS 

[number+reg+k*ind] the value contained at the memory address ob
tained by adding the number, the register and index register times 
k 

This allows a lot of flexibility in array accesses. For arrays in the 
text and data segments it is possible to use the label along with an index 
register with a multiplier for the array element size (as long as the array 
element siz;e is 1 ,  2, 4 or 8) . With arrays passed into functions, the 
address must be placed in a register. Therefore the form using a label is 
not possible. Instead we could use a base register along with . an index 
register. Any of the 16 general purpose registers may be used as a base 
register or an index register, however it is unlikely that you would use 
the stack pointer register as an index register. 

Let's look at an example using a base register and an index register. 
Let's suppose we wish to copy an array to another array in a function. 
Then the two array addresses could be the first 2 parameters ( rdi and · 
rsi) and the number of array elements could be the third parameter rdx. 
Let's assume that the arrays are double word arrays . 

segment . text 
global copy_array 

copy_array : 
xor ecx , ecx 

more : mov eax , [rsi +4*rcx] 
mov [rdi +4*rcx] , eax 
add rex , 1 
cmp rex , rdx 
j ne more 
xor eax , eax 
ret 

In the copy _array function we used the parameters as they were pro
vided. We used rsi as the base address register for the source array and 
rdi as the base address register for the destination array. For both ac
cesses we used rex as the index register with a multiplier of 4 since the 
arrays have 4 byte elements .  This allows use to compare rex versus rdx 
to see if there are more elements to copy. 



10.3. ALLOCATING ARRAYS 103 

Note that multiplying by 2, 4 or 8 is a shift of 1 ,  2 or 3 bits, so there 
is effectively 0 cost to using the multiplier. Alternatively we could add 4 
to ecx in each loop iteration after shifting rdx left 2 positions. 

The last pattern would be useful for accessing an array of structs. If 
you had an array of structs with each struct having a character array and 
a pointer, then the number part of the reference could be the offset of 
the struct element within the struct , while the base register and index 
register could define the address of a particular struct in the array. 

10.3 Allocating arrays 

The simplest way to allocate memory in assembly is probably to use the 
C library malloc function. The prototype for malloc is 

void *malloc ( long size ) ;  

On success malloc returns a pointer to the allocated memory, while 
failure results in malloc returning 0. The memory returned by malloc 
is bounded on 16  byte boundaries, which is useful as an address for any 
type of object (except for arrays needing to be on 32 byte boundaries for 
A VX instructions) . The memory can be returned for potential reuse by 
calling the free function with the pointer returned by malloc 

void free ( void *ptr ) ;  

Here is an assembly segment to allocate an array of 1000000000 bytes 

extern malloc 

mov rdi , 1000000000 
call malloc 
mov [pointer] , rax 

There are several advantages to using allocated arrays. The most ob
vious one is that you can have arrays of exactly the right size. Frequently 
you can compute the size of array needed in your code and allocate an 
array of the correct size. If you use statically defined arrays either in the 
data or bss segment, you have to know the size needed before running 
the program (or guess) . 



104 CHAPTER 10. ARRAYS 

Another less obvious reason for using allocated arrays is due to size 
limitations imposed on the data and bss sections by either the assembler, 
linker or operating system. yasm reports FATAL : out of memory when 
you try to allocate an array of 3 billion bytes or greater. It succeeds with 
an array of 2 billion bytes in the bss segment. It took approximately 104 
seconds on a 2.4 GHz Opteron system to assemble and link a test program 
with a 2 GB array. In addition both the object file and the executable 
file exceeded 2 billion bytes in size. It is much faster (less than 1 second) 
to assemble and link a program using malloc and the executable size was 
about 10 thousand bytes. 

The program using malloc was modified to allocate 20 billion bytes 
and still assembled and linked in less than 1 second. It executed in 3 
milliseconds. There is no more practical way to use large amounts of 
memory other than using allocated memory. 

The user should be cautioned not to attempt to assemble programs 
with large static memory needs on a computer with less RAM than re
quired. This will cause disk thrashing while assembling and linking, using 
far more than 100 seconds and nearly crippling the computer during the 
process. Also it can be quite painful to use arrays larger than memory 
even if they are allocated. Disk thrashing is not cool. 

10.4 Processing arrays 

Here we present an example application with several functions which 
process arrays. This application allocates an array using malloc, fills 
the array with random numbers by calling random and computes the 
minimum value in the array. If the array size is less than or equal to 20, 
it prints the values in the array. 

10.4 . 1  Creating the array 

The array is created using the create function shown below. This func
tion is perhaps too short to be a separate function. It multiplies the array 
size by 4 to get the number of bytes in the array and then calls malloc. 

array = create ( size ) ;  
create : 



10.4. PROCESSING ARRAYS 105 

push rbp 
mov rbp , rsp 
imul rdi , 4 
call malloc 
leave 
ret 

10.4.2 Filling the array with random numbers 

The f ill function uses storage on the stack for local copies of the array 
pointer and its size. It also stores a local variable on the stack. These 
3 variables require 24 bytes of storage, so we subtract 32 from rsp to 
maintain the 16  byte alignment of the stack. We store data in the array 
using "mov [rdi +rcx*4] , rax" , where rdi holds the address of the start 
of the array and rex contains the index of the current array element. 

Here we use several local labels. A local label is a label beginning 
with a dot . Their scope is between normal labels. So in the f il l  func
tion, labels . array, . size, . i and . more are local. This allows reusing 
these same labels in other functions, which simplifies the coding of this 
application. 

f ill  ( array , size ) ; 
fill : 
. array equ 0 
. size equ 8 
. i  equ 16 

push rbp 
mov rbp , rsp 
sub rsp , 32 
mov [rsp+ . array] , rdi 
mov [rsp+ . s ize] , rsi 
xor ecx , ecx 

. more mov [rsp+ . i] , rex 
call random 
mov rex , [rsp+ . i] 
mov rdi , [rsp+ . array] 
mov [rdi +rcx*4] , eax 
inc rex 



106 

emp 
j l  
leave 
ret 

rex , [rsp+ . size] 
. more 

10.4.3 Printing the array 

CHAPTER 1 0. ARRAYS 

Printing the array is done with print£ .  The print function: just like 
f ill ,  needs to save 3 values on the stack since it calls another function. 
The code is somewhat similar to f ill, except that array values are loaded 
into a register rather than values being stored in the array. You will notice 
that the data segment is used to store the print£ format in a spot near 
the print£ call. You will also notice that I have reused several local 
labels. 

print ( array , size ) ;  
print : 
. array equ 0 
. size equ 8 
. i equ 16 

push rbp 
mov rbp , rsp 
sub rsp , 32 
mov [rsp+ . array] , rdi 
mov [rsp+ . size] , rsi 
xor eex , eex 
mov [rsp+ . i] , rex 
segment . data 

. format : 
db "%10d" , Ox0a , O  
segment . text 

. more lea rdi , [ . format] 
mov rdx , [rsp+ . array] 
mov rex , [rsp+ . i] 
mov esi , [rdx+rex*4] 
mov [rsp+ . i] , rex 
call print£ 
mov rex , [rsp+ . i] 



1 0.4. PROCESSING ARRAYS 

inc rex 
mov [rsp+ . i] , rex 
cmp rex , [rsp+ . size] 
j l  . more 
leave 
ret 

10.4.4 Finding t he minimum value 

107 

The min function does not call any other functions, so there is no real need 
for a stack frame and no need to align the stack at a 16 byte boundary. A 
conditional move instruction is used to avoid interrupting the instruction 
pipeline. 

X = min ( array , size ) ; 
min : 

mov eax , [rdi] 
mov rex , 1 

. more mov r8d , [rdi +rcx*4] 
cmp r8d , eax 
cmovl eax , r8d 
inc rex 
cmp rex , rsi 
j l  . more 
ret 

10.4.5 Main program for the array minimum 

The main program is shown below. It uses stack space for the local 
variables . array and . size.  It uses a command line parameter for the 
array size, which is discussed in the next section. Comments in the code 
outline the behavior. 

main : 
. array equ 0 
. size equ 8 

push rbp 
mov rbp , rsp 



108 CHAPTER 10. ARRAYS 

. nosize : 

sub rsp , 16  

set default size 
mov ecx , 10  
mov [rsp+ . size] , rex 

check for argv [1]  providing 
cmp edi , 2 
j l  . nosize 
mov rdi , [rsi+8] 
call atoi  
mov [rsp+ . s ize] , rax 

create the array 
mov rdi , [rsp+ . size] 
call create 
mov [rsp+ . array] , rax 

a size 

fill the array with random numbers 

. toobig : 

mov rdi , rax 
mov rsi ,  [rsp+ . size] 
call fill  

if  size < =  20 print the array 
mov rs i ,  [rsp+ . size] 
cmp 
j g  
mov 
call 

rs i ,  20 
. toobig 
rdi , [rsp+ . array] 
print 

print the minimum 
segment . data 

. format : 
db "min : %ld" , Oxa , O  
segment . text 
mov rdi , [rsp+ . array] 

--



10.5. COMMAND LINE PARAMETER ARRAY 

mov rsi ,  [rsp+ . size] 
call min 
lea rdi , [ . format] 
mov rsi ,  rax 
call print£ 

leave 
ret 

10 .5  Command line parameter array 

109 

The command line parameters are available to a C program as parameters 
to main. The number of command line parameters is the first argument 
to main and an array of character pointers is the second argument to 
main. The first parameter is always the name of the executable file being 
run. The remaining parameters are the expansion by the user's shell of 
the rest of the command line. This expansion makes it convenient to use 
patterns like * . dat on the command line. The shell replaces that part of 
the command line with all the matching file names. 

Here is a simple C program to print the command line parameters: 

#include <stdio . h> 

int main ( int argc , char *argv [] ) 
{ 

int i ;  
for ( i = 0 ;  i < argc ; i++ ) { 

printf ( 11 %s\n1 1 , argv [i] ) ;  
} 
return 0 ;  

} 

When executed as " . /args hello world" , it prints 

. /args 
hello 
world 



110 CHAPTER 10. ARRAYS 

The argv array is passed like all C arrays by placing the address of 
the first element of the array in a register or on the stack. In the case of 
argv its address is in register rsi. Below is a translation of the program 
to assembly, though the assembly code takes advantage of the fact that 
there is a NULL pointer at the end of the argv array. 

segment . data 
format db "%s " , Ox0a , O  

segment . text 
global main 
extern printf 

main : push rbp 
mov 
sub 
mov 
mov 

start_loop : 
lea 
mov 
call 
mov 
add 
mov 
cmp 
j nz 

end_loop : 

rbp , rsp 
rsp , 16  
rex , rsi 
rsi ,  [rex] 

rdi , [format] 
[rsp] , rex 
printf 
rex , [rsp] 
rex , 8 
rsi ,  [rex] 
rsi ,  0 
start_loop 

xor eax , eax 
leave 
ret 

let the linker know about main 
resolve printf from libc 
prepare stack frame for main 

move argv to rex 
get f irst argv string 

save argv 

restore rsi 
advance to next po inter in argv 
get next argv string 

end with NULL pointer 



10.5. COMMAND LINE PARAMETER ARRAY 

Exercises 

111 

1. Write 2 test programs: one to sort an array of random 4 byte in
tegers using bubble sort and a second program to sort an array of 
random 4 bytes integers using the qsort function from the C library. 
Your program should use the C library function atol to convert a 
number supplied on the command line from ASCII to long. This 
number is the size of the array (number of 4 byte integers) . Then 
your program can allocate the array using malloc and fill the array 
using random. You call qsort like this 

qsort ( array , n ,  4 ,  compare ) ;  

The second parameter is the number of array elements to sort and 
the third is the size in bytes of each element . The fourth parameter 
is the address of a comparison function. Your comparison function 
will accept two parameters. Each will be a pointer to a 4 byte 
integer. The comparison function should return a negative, 0 or 
positive value based on the ordering of the 2 integers. All you have 
to do is subtract the second integer from the first. 

2. Write a program to use qsort to sort an array of random integers 
and use a binary search function to search for numbers in the array. 
The size of the array should be given as a command line parameter. 
Your program should use random 0 %1000 for values in the array. 
This will make it simpler to enter values to search for. After building 
the array and sorting it, your program should enter a loop reading 
numbers with scanf until scanf fails to return a 1. For each number 
read, your program should call your binary search function and 
either report that the number was found at a particular index or 
that the number was not found. 

3 .  Write an assembly program to compute the Adler-32 checksum 
value for the sequence of bytes read using fgets to read 1 line 
at a time until end of file. The prototype for fgets is 

char *fgets ( char *s,  int size , FILE *fp ) ;  



1 12  CHAPTER 10. ARRAYS 

The parameter s is a character array which should be in the bss 
segment. The parameter size is the number of bytes in the array 
s .  The parameter fp is a pointer and you need stdin. Place the 
following line in your code to tell the linker about stdin 

extern stdin 

fgets will return the parameter s when it succeeds and will return 0 
when it fails. You are to read until it fails. The Adler-32 checksum 
is computed by 

long adler32 ( char *data , int len) 
{ 

long a = 1 ' b = 0 ;  
int i ;  

for ( i = 0 ;  i < len ; i++ ) { 
a = (a + data [i] ) % 6552 1 ; 
b = (b + a) % 65521 ; 

} 
return (b << 16) I a ;  

} 

Your code should compute 1 checksum for the entire file. If you use 
the function shown for 1 line, it works for that line, but calling it 
again restarts . . .  

4 .  Write a test program to  evaluate how well the hashing function 
below works. 

int multipliers [] = { 
1 23456789 , 
234567891 ,  
345678912 , 
4567891 23 , 
56789 1234 , 



10.5. COMMAND LINE PARAMETER ARRAY 

} ;  

int 
{ 

} 

678912345 , 
789123456 , 
891234567 

hash ( unsigned 

unsigned long h 
int i = 0 ;  

while ( s [i] ) { 
h = h + s [i] 
i++ ; 

} 

char * S  ) 

= 0 ;  

* multipliers [i%8] ; 

return h % 9999 1 ;  

1 13  

Your test program should read a collection of strings using scan£ 
with the format string "%79s" where you are reading into a charac
ter array of 80 bytes. Your program should read until scan£ fails 
to return 1 .  As it reads each string it should call hash (written in 
assembly) to get a number h from 0 to 99990. It should increment 
location h of an array of integers of size 99991 .  After entering all 
the data, this array contains a count of how many words mapped 
to a particular location in the array. What we want to know is how 
many of these array entries have 0 entries, how many have 1 entry, 
how many have 2 entries, etc. When multiple words map to the 
same location, it is called a "collision" . So the next step is to go 
through the array collision counts and increment another array by 
the index there. There should be no more than 1000 collisions, so 
this could be done using 

for ( i = 0 ;  i < 99991 ; i++ ) { 
k = collisions [i] ; 
if ( k > 999 ) k = 999 ; 
count [k] ++ ; 



1 14 CHAPTER 10. ARRAYS 

} 

After the previous loop the count array has interesting data. Use a 
loop to step through this array and print the index and the value 
for all non-zero locations. 

An interesting file to test is "/usr /share/diet/words" . 

5. Write an assembly program to read a sequence of integers using 
scanf and determine if the first number entered can be formed 
as a sum of some of the other numbers and print a solution if it 
exists. You can assume that there will be no more than 20 numbers. 
Suppose the numbers are 20, 12 ,  6 ,  3 ,  and 5. Then 20 = 12 + 3 + 5. 
Suppose the numbers are 25, 1 1 ,  17 ,  3. In this case there are no 
solutions. 



Chapter 1 1  

Floating point instructions 

The 8088 CPU used a floating point coprocessor called the 8087 to per
form floating point arithmetic. Many early computers lacked the 8087 
chip and performed floating point operations in software. This arrange
ment continued until the 486 which contained a coprocessor internally. 
The 8087 used instructions which manipulated a stack of 80 bit floating 
point values. These instructions are still part of modern CPUs, though 
there is a completely separate floating point facility available which has 
sixteen 128 bit registers (256 bits for the Intel Core i series) in 64 bit 
mode. We will study the newer instructions. 

If you study the Intel 64 and IA-32 Architectures Software Developers 
Manual, you will find many instructions such as fadd which work with 
registers named ST ( 0 )  , ST ( 1 )  , . . . . These instructions are for the math 
coprocessor. There are newer instructions such as addsd which work 
with Streaming SIMD Extensions (SSE) registers xmmO, xmm1 ,  . . .  xmm15 .  

SIMD is an acronym for "Single Instruction - Multiple Data" . These 
instructions are the focus of this chapter. 

1 1 . 1  Floating point registers 

There are 16 floating point registers which serve dual purposes holding 
either 1 value or multiple values. The names for these registers are xmmO, 
xmm1 ,  . . . and xmm15. These registers can be used with instructions oper
ating on a single value in each register or on a vector of values. When 

1 15 



1 16  CHAPTER 1 1 .  FLOATING POINT INSTRUCTIONS 

used as a vector an XMM register can be used as either 4 floats or 2 
doubles. 

The Core i series of computers introduced the Advanced Vector Ex
tensions which doubled the size of the floating point registers and add 
some new instructions. To use the full 256 bits (8 f loats or 4 doubles) 
you need to use a register name from ymmO, ymm1 , . . .  ymm15. Each XMM 
register occupies the first 128 bits of the corresponding YMM register. 

For most of this chapter the discussion refers only to XMM registers. 
In all cases the same instruction can be used with YMM registers to 
operate on twice as many data values. Stating this repeatedly would 
probably be more confusing than accepting it as a rule. 

1 1 .2 Moving data to/from floating point regis
ters 

The SSE registers are 128 bits on most x86-64 CPUs (256 bits for the 
A VX registers) .  These registers can be used to do 1 operation at a time 
or multiple operations at a time. There are instructions for moving 1 
data value and instructions from moving multiple data items, referred to 
as "packed" data. 

1 1 . 2 . 1  Moving scalars 

There are two instructions for moving scalar ( 1  value) floating point values 
to/from SSE registers: movss which moves 32 bit floating point values 
(floats) and movsd which moves 64 bit floating point values (doubles) .  
These two instructions move a floating value from memory to/from the 
lower part of a XMM register or from one XMM register to another. 
There is no implicit data conversion - after movss a 32 bit value exists in 
the destination. Here is a sample: 

movss 
movsd 
movss 

xmmO , [x] 
[y] , xmm1 
xmm2 , xmmO 

move value at x into xmmO 
move value from xmm1 to y 
move from xmmO to xmm2 



11 .3. ADDITION 1 1 7  

1 1 . 2 . 2  Moving packed data 

There are instructions for loading integer packed data and floating point 
packed data. We will concentrate here on packed floating point data. 
You can move packed floats or packed doubles. There are instructions for 
moving aligned or unaligned packed data. The aligned instructions are 
movaps for moving four floats and movapd for moving two doubles using 
XMM registers. The unaligned versions are movups and movupd. Moving 
packed data to/from YMM registers moves twice as many values. 

Aligned data means that it is on a 16 byte boundary in memory. 
This can be arranged by using align 16 for an array in the data section. 
The alignb pseudo-op for an array in the bss section does not do the 
job properly. Arrays allocated by malloc will be on 16 byte boundaries. 
Your program will fail with a segmentation fault if you attempt to use an 
aligned move to an unaligned address. Fortunately on the Core i series 
of CPUs the unaligned moves are just as fast as the aligned moves when 
the data is aligned. Here is a sample 

movups xmm.O , [x] move 4 floats to xmmO 
movups ymmO , [x] move 8 floats to ymmO 
movups ymm1 , [x] move 4 doubles to ymm1 
movupd [a] , xmm15 move 2 doubles to a 

1 1 .3 Addition 

The instructions for adding floating point data come in scalar and packed 
varieties. The scalar add instructions are addss to add two floats and 
addsd to add two doubles. Both these operate on a source operand and 
destination operand. The source can be in memory or in an XMM register 
while the destination must be in an XMM register. Unlike the integer 
add instruction the floating point add instructions do not set any flags, 
so testing must be done using a compare instruction. 

The packed add instructions are addps which adds 4 floats from the 
source to 4 floats in the destination and addps which adds 2 doubles from 
the source to 2 doubles in the destination using XMM registers. Like the 

. scalar adds the source can be either memory or an XMM register, while 
the destination must be an XMM register. Using packed adds with YMM 
registers adds either 8 pairs of floats or 4 pairs of doubles. 



118  CHAPTER 11 .  FLOATING POINT INSTRUCTIONS 

movss xmmO , [a] load a 
addss xmmO , [b] add b to a 
movss [c] , xmmO store sum in c 
movapd xmmO , [a] load 2 doubles from a 
addpd xmmO , [b] add a [0] +b [0] and a [1]  +b [1]  
movapd [c] , xmmO store 2 sums in c 
movupd ymmO , [a] load 4 doubles from a 
addpd ymmO , [b] add 4 pairs of numbers 
movupd [c] , ymmO store 4 sums in c 

1 1 .4  Subtraction 

Subtraction operates like addition on either scalar floats or doubles or 
packed floats or doubles. The scalar subtract instructions are subss which 
subtracts the source float from the destination float and subsd which 
subtracts the source double from the destination double. The source can 
be either in memory or in an XMM register, while the destination must be 
an XMM register. No flags are affected by the floating point subtraction 
instructions. 

The packed subtract instructions are subps which subtracts 4 source 
floats from 4 floats in the destination and the subpd which subtracts 2 
source doubles from 2 doubles in the destination using XMM registers. 
Again the source can be in memory or in an XMM register, while the 
destination must be an XMM register. Using packed subtracts with YMM 
registers subtracts either 8 floats or 4 doubles. 

movss xmmO , [a] load a 
subss xmmO , [b] subtract b from a 
movss [c] , xmmO store a-b in c 
movapd xmmO , [a] load 2 doubles from a 
subpd xmmO , [b] subtract a [O] -b [O] and a [1 ]  -b [1 ]  
movapd [c] , xmmO store 2 differences in c 
movapd ymmO , [a] load 4 doubles from a 
subpd ymmO , [b] subtract 4 doubles from b 
movapd [c] , ymmO store 4 differences in c 



11 .5. MULTIPLICATION AND DIVISION 119  

1 1 . 5  Multiplication and division 

Multiplication and division follow the same pattern as addition and sub
traction in that they operate on memory or register operands. They sup
port floats and doubles and they support scalar and packed data. The 
basic mathematical instructions for floating point data are 

instruction effect 
addsd add scalar double 
addss add scalar float 
addpd add packed double 
addps add packed float 
subsd subtract scalar double 
subss subtract scalar float 
subpd subtract packed double 
subps subtract packed float 
mulsd multiply scalar double 
mulss multiply scalar float 
mulpd multiply packed double 
mulps multiply packed float 
divsd divide scalar double 
divss divide scalar float 
divpd divide packed double 
divps divide packed float 

1 1 .6 Conversion 

It is relatively common to need to convert numbers from one length in
teger to another, from one length floating point to another, from integer 
to floating point or from floating point to integer. Converting from one 
length integer to another is accomplished using the various move instruc
tions presented so far. The other operations take special instructions. 

1 1 . 6 . 1  Converting t o  a different length floating point 

There are 2 instructions to convert floats to doubles: cvtss2sd which 
converts one float to a double and cvtps2pd which converts 2 packed 



120 CHAPTER 1 1 .  FLOATING POINT INSTRUCTIONS 

floats to 2 packed doubles. The source can be a memory location or an 
XMM register while the destination must be an XMM register. 

Similarly 2 instructions convert doubles to floats: cvtsd2ss which 
converts a double to a float and cvtpd2ps converts 2 packed doubles to 
2 packed floats. It has the same restriction that the destination must be 
an XMM register. 

cvtss2sd 
addsd 
cvtsd2ss 
movss 

xmmO , [a] 
xmmO , [b] 
xmmO , xmmO 
[c] , xmmO 

get a into xmmO as a double 
add a double to a 
convert to f loat 

1 1 . 6 . 2  Converting floating p oint to/from integer 

· There are 2 instructions which convert floating point to integers by round
ing: cvtss2si which converts a float to a double or quad word integer 
and cvtsd2si which converts a double to a double or quad word integer. 
The source can be an XMM register or a memory location, while the 

· destination must be a general purpose register. There are 2 instructions 
which convert by truncating: cvttss2si and cvttsd2si .  

There are 2 instructions which convert integers to floating point: 
cvtsi2ss which converts a double or quad word integer to a float and 
cvts i2sd which converts a double or quad word integer to a double. The 
source can be a general purpose register or a memory location, while the 
destination must be an XMM register. When using a register for the 
source the size is implicit in the register name. When using a memory 
location you need to add "dword" or "qword" to the instruction to specify 
the size. 

cvtss2si 
cvtsi2sd 
cvtsi2sd 

eax , xmmO 
xmmO , rax 
xmmO , dword 

; convert to dword integer 
; convert qword to double 
[x] ; convert dword integer 

1 1 . 7  Floating point comparison 

The IEEE 754 specification for floating point arithmetic includes 2 types 
of "Not a Number" or NaN. These 2 types are quiet NaNs and signaling 



1 1 .8. MATHEMATICAL FUNCTIONS 121 

NaNs. A quiet NaN (QNaN) is a value which can be safely propagated 
through code without raising an exception. A signaling NaN (SN aN) 
always raises an exception when it is generated. Perhaps you have wit
nessed a program failing with a divide by 0 error which is caused by a 
signal. 

Floating point comparison is considered to be either "ordered" or 
"unordered" . An ordered comparison causes a floating point exception if 
either operand is QNaN or SNaN. An unordered comparison causes an 
exception for only SNaN. The gee compiler uses unordered comparisons, 
so I will do the same. 

The unordered floating point comparison instructions are ucomiss for 
comparing floats and ucomisd for comparing doubles. The first operand 
must be an XMM register, while the second operand can be memory or 
an XMM register. They set the zero flag, parity flag and carry flag to 
indicate the type of result: unordered (at least 1 operand is NaN) , less 
than, equal or greater than. A conditional jump seems like a natural 
choice after a comparison, but we need some different instructions for 
floating point conditional jumps. 

instruction meaning aliases flags 
jb jump if < (floating point) JC Jnae CF=l 
jbe jump if <= (floating point) JC  Jnae CF= l or ZF=l 
Ja jump if > (floating point) jnbe ZF=O CF=O ' 

Jae jump if >= (floating point) jnc jnb CF=O 

movss xmmO , [a] 
mulss xmmO , [b] 
ucomiss xmmO , [e] 
jbe less_eq jmp if a*b <= c 

11 .8  Mathematical functions 

The 8087 coprocessor implemented a useful collection of transcendental 
functions like sine, cosine and arctangent. These instructions still exist 
in the modern CPUs, but they use the floating point register stack and 
are no longer recommended. Instead efficient library functions exist for 
the these functions. 



122 CHAPTER 1 1 .  FLOATING POINT INSTRUCTIONS 

The SSE instructions include floating point functions to compute min
imum and maximum, perform rounding, and compute square roots and 
reciprocals of square roots. 

1 1 . 8 . 1  Minimum and maximum 

The minimum and maximum scalar instructions are minss and maxss 
to compute minimums and maximums for floats and minsd and maxsd 
to do the same for doubles. The first operand (destination) must be an 
XMM register, while the second operand (source) can be either an XMM 
register or a memory location. The result is placed in the destination 
register. 

There are packed versions of the minimum and maximum instructions: 
minps, maxps, minpd and maxpd which operate on either 4 floats (the ps 
versions) or 2 doubles (the pd versions) . The packed instructions require 
an XMM register for the first operand and either an XMM register or 
memory for the second. The float versions compute 4 results while the 
double versions compute 2 results. 

movss xmmO , [x] move x into xmmO 
maxss xmmO , [y] xmmO bas max (x , y) 
movapd xmmO , [a] move a [0] and a [1 ]  into xmmO 
minpd xmmO , [b] xmmO [O] bas min (a [O] , b [O] ) 

xmm0 [1] bas min(a [1]  ,b [ 1] ) 

1 1 . 8 . 2  Rounding 

The SSE instructions include 4 instructions for rounding floating point 
numbers to whole numbers: roundss which rounds 1 float, roundps 
which rounds 4 floats, roundsd which rounds 1 double and roundpd which 
rounds 2 doubles. The first operand must be an XMM register, while the 
second operand can be either an XMM register or a memory location. 
There is a third operand which selects a rounding mode. A simplified 
view of the possible rounding modes is in the table below: 



1 1 .9. SAMPLE CODE 123 

mode meanmg 
0 round, giving ties to even numbers 
1 round down 
2 round up 
3 round toward 0 (truncate) 

1 1 . 8 . 3  Square roots 

The SSE instructions include 4 square root instructions: sqrtss  which 
computes 1 float square root, sqrtps which computes 2 float square roots, 
sqrtsd which computes 1 double square root and sqrtpd which computes 
2 double square roots. As normal the first operand (destination) must be 
an XMM register, and the second operand can be either an XMM register 
or a memory location. Bounding to 16 byte boundaries is required for 
packed instruction with a memory reference. 

1 1 . 9  Sample code 

Here we illustrate some of the instructions we have covered in some fairly 
practical functions. 

1 1 . 9 . 1  Distance in 3D 

We can compute distance in 3D using a function which accepts 2 float 
arrays with x ,  y and z coordinates. The 3D distance formula is 

distance3d : 
movss xmmO , [rdi] x from first point 
subss xmmO , [rsi] subtract x from second point 
mulss xmmO , xmmO (x1-x2) �2 
movss  xmml , [rdi+4] y from first point 
subss xmml , [rsi+4] subtract y from second po int 
mulss  xmml , xmm1 (y1-y2 ) - 2  
movss xmm2 , [rdi+8] z from first po int 
subss xmm2 , [rsi+8] subtract z from second point 
mulss xmm2 , xmm2 (z1-z2) - 2  



124 CHAPTER 1 1 .  FLOATING POINT INSTRUCTIONS 

addss 
addss 

xmmO , xmml 
xmmO , xmm2 

sqrtss xmmO , xmmO 
ret 

add x and y parts 
add z part 

1 1 . 9 . 2  Dot product of 3 D  vectors 

The dot product of two 3D vectors is used frequently in graphics and is 
computed by 

d = XIX2 + YIY2 + ZIZ2 · 

Here is a function computing the dot product of 2 float vectors passed 
as 2 arrays 

dot_product : 
movss xmmO , [rdi] 
mulss xmmO , [rsi] 
movss xmm1 , [rdi+4] 
mulss xmm1 , [rsi+4] 
addss xmmO , xmm1 
movss xmm2 , [rdi+8] 
mulss xmm2 , [rsi+8] 
addss xmmO , xmm2 
ret 

1 1 .9 . 3  Polynomial evaluation 

The evaluation of a polynomial of 1 variable could be done at least 2 
ways. First is the obvious definition: 

A more efficient way to compute the value is using Horner's Rule: 

bn = pn 

bn-1 = Pn-1 + bnx 

bn-2 = Pn-2 + bn-IX 
bo = Po + b1x 



1 1 . 9. SAMPLE CODE 125 

Then P(x) = bo . 
Written as a function with an array of double coefficients as the first 

parameter (rdi) ,  a value for x as the second parameter (xmm.O) and the 
degree of the polynomial as the third parameter ( rsi) we have: 

horner : movsd 
movsd 
cmp 
j z  

more : sub 
mulsd 
addsd 
j nz 

done : ret 

xmm1 ,  
xmm.O , 
es i ,  0 
done 
esi , 1 
xmm.O , 
xmm.O , 
more 

xmm.O 
[rdi+rsi*8] 

xmm1 
[rdi +rsi*8] 

use xmm1 as x 
accumulator for b k 
is the degree 0?  

b_k * X 
add p_k 



126 

Exercises 

CHAPTER 1 1 .  FLOATING POINT INSTRUCTIONS 

1 .  Write a program testing a function to compute sin(x) . The formula 
for sin(x) is given as the Taylor's series: 

x3 x5 x7 
sin ( x) = x -

31  
+ 5! - 7! · · · 

Your function should work with doubles. Your program should read 
2 numbers at a time using scanf . The first number is x and the 
second number is the number of terms of the expansion to compute. 
Your program should call your sine function and print the value it 
computes using scanf . The reading and computing should continue 
until scanf fails to return 2. 

2. Write a program to compute the area of a polygon. You can use 
this formula for the area: 

1 
n-1 

A = 2 L (XiYi+l - Xi+lYi)  
i=O 

Your area function should have 3 parameters. The first parameter 
is an array of doubles holding x values. The second is an array of 
doubles holding y values. The third is the value n. Your arrays 
should be size n + 1 and location n of both arrays should be repeats 
of location 0. The number of vertices will be read using scanf . 
Then your program should allocate arrays of size n + 1 and read 
the coordinates using scanf . Lastly your program should compute 
and print the area. 

3. Write a program to approximate the definite integral of a polyno
mial function of degree 

5 
using the trapezoidal rule. A polynomial 

of degree 
5 

is defined by 6 coefficients Po , Pl , . . .  p5 , where 

( ) 2 3 4 5 P x = Po + PIX + P2X + P3X + P4X + Psx 

The trapezoidal rule states that the integral from a to b of a function 

f ( x) can be approximated as 

(b _ a) 
f(a) + f(b) 

2 



1 1 .9. SAMPLE CODE 127 

To use this to get a good approximation you divide the interval 
from a to b into a collection of sub-intervals and use the trapezoidal 
rule on each sub-interval. Your program should read the values 
of a and b. Then it should read the number of sub-intervals n .  

Last it should read the coefficients of the polynomial in the order 
po, Pl , . .  · P5 ·  Then it should perform the computation and print the 
approximate integral. 



128 CHAPTER 1 1 .  FLOATING POINT INSTRUCTIONS 



Chapter 1 2  

Systen1 calls 

A system call is essentially a function call which changes the CPU into 
kernel mode and executes a function which is part of the kernel. When 
you run a process on Linux it runs in user mode which means that it is 
limited to executing only "safe" instructions. It can move data within the 
program, do arithmetic, do branching, call functions, . . .  , but there are 
instructions which your program can't do directly. For example it would 
be unsafe to allow any program to read or write directly to the disk device, 
so this is prevented by preventing user programs from executing input or 
output instructions. Another prohibited action is directly setting page 
mapping registers. 

When a user program needs to do something like open a disk file, it 
makes a system call. This changes the CPU's operating mode to kernel 
mode where the CPU can execute input and output instructions. The 
kernel open function will verify that the user program has permission to 
open the file and then open it, performing any input or output instructions 
required on behalf of the program. 

The Linux system call interface is different for 32 bit mode and 64 bit 
mode. Under 64 bit Linux the 32 bit interface is still available to support 
32 bit applications and this will work to some extent for 64 bit programs. 

129 



130 CHAPTER 12. SYSTEM CALLS 

1 2 . 1  32 bit system calls 

Each system call is defined in· "/usr I include/ asm/unistd_32 . h" . To 
execute the system call you must place the system call number in register 
eax and use the software interrupt instruction to effect the call: int 
Ox80. System calls have parameters which are placed in registers ebx, 
ecx, edx, esi, edi, and ebp. Return values are placed in eax. 

Here is a system call to write to stdout: 

segment . data 
hello : db "Hello world ! " , OxOa 

segment . text 

mov eax , 4 
mov ebx , 1 
lea ecx , [hello] 
mov rdx , 13 
int Ox80 

12 .2  64 bit system calls 

syscall 4 is write 
file descriptor 
array to write 
write 13 bytes 

The system calls for 64 bit Linux are different integers than for 32 bit 
Linux and are defined in "/usr/include/asm/unistd_64 . h" . Again the 
system calls use registers for parameters, though the registers are differ
ent . The system call number is placed in rax and the parameters are 
placed in rdi , rs i ,  rdx, r10, r8 and r9. Return values are placed in 
rax. The registers are the same as in C function calls except that r10 
has replaced rex for parameter 4. 

Instead of using the software interrupt instruction, x86-64 Linux uses 
the syscall instruction to execute a system call. Here is the 64 bit 
version of "Hello world" : 

segment . data 
hello : db "Hello world ! " , OxOa 

segment . . text 
global _start 

start : mov eax , 1 syscall 1 is write 
mov edi , 1 f ile descriptor 



12.3. C WRAPPER FUNCTIONS 131 

lea rsi ,  [hello] array to write 
mov edx , 13 write 13 bytes 
syscall 
mov eax , 60 syscall 60 is exit 
xor edi , edi exit (O)  
syscall 

12 .3  C wrapper functions 

The lingua franca of UNIX is C, so every system call is usable via a C 
wrapper function. For example there is a write function in the C library 
which does very little other than use the syscall instruction to perform 
the write request. Using these functions rather than the explicit syscall 
instruction is the preferred way to use the system calls. You won't have 
to worry about finding the numbers and you won't have to cope with the 
slightly different register usage. 

The Linux system calls are documented in section 2 of the on-line 
manual, so you can do 

man 2 write 

to learn how to use the write system call. 
The previous "Hello world" program can be rewritten using write 

and exit as 

segment . data 
msg : db "Hello World ! " , OxOa String to print 
len : equ $-msg Length of the string 

segment . text 
global main 
extern write ,  exit 

main : 
mov edx , len Arg 3 is the length 
mov rsi ,  msg Arg 2 is the array 
mov edi , 1 Arg 1 is  the fd 
call write 
xor edi , edi 0 return = success 
call exit 



132 CHAPTER 12. SYSTEM CALLS 

Here you will notice that I have used a yasm equate to define len to 
be the current assembly point , $, minus the address of msg. equ is a 
pseudo-op which defines a symbolic name for an expression. This saves 
the trouble of counting characters and insulates the program from slight 
changes. 

You might also have noticed the use of extern to tell the linker that 
write and exit are to be defined in some other place, in this case from 
the C library. 

1 2 . 3 . 1  open system call 

In order to read and write a file, it must be opened. For ordinary files 
this is done using the open system call: 

int open ( char *pathname , int flags [ ,  int mode ] ) ;  

The pathname is a C string (character array terminated with a 0 byte) . 
The flags are a set of bit patterns which are or'ed together to define how 
the file is to be opened: read-only mode, write mode or read-write mode 
and other characteristics like whether the file is to be created. If the file 
is to be created the mode parameter defines the permissions to assign to 
the new file. 

The flags are defined in the table below: 

bits meanmg 
0 read-only 
1 write-only 
2 read and write 

Ox40 create if needed 
Ox200 truncate the file 
Ox400 append 

The basic permissions are read, write and execute. A process must 
have read permission to read an object , write permission to write it , and 
execute permission to execute it. Execute permission for a file means 
that the file (either a program or a script) can be executed. Execute 
permission for a directory allows traversal of the directory. 

These three permissions are granted or denied for 3 categories of ac
counts: user, group and other. When a user logs in to a Linux system the 



12.3. C WRAPPER FUNCTIONS 133 

user's shell is assigned the user's user-id which is an integer identifying 
the user. In addition the user has a group-id (also an integer) which iden
tifies the user as being in a particular group of users. A user can belong 
to multiple groups though only one is the active group. You can use the 
"id" command in the shell to print your user-id, group-id and the list of 
groups you belong to. 

The basic permissions are 3 permissions for 3 groups. The permissions 
are 1 bit each for read, write and execute. This makes an ideal situation 
for using octal numbers. One octal "digit" represents 3 bits. Using 9 bits 
you can specify the basic permissions for user, group and others . Using 
yasm an octal number can be represented by a sequence of digits ending 
in either "o" or "q" . Thus you could specify permissions for read and 
write for the user as 6, read for the group as 4 and no permissions for 
others as 0. Putting all these together we get 640o . 

The return value from open is a file descriptor if the value is greater 
than or equal to 0. An error is indicated by a negative return. A file 
descriptor is an integer identifying the connection made by open. File 
descriptors start at 0 and increase for each opened file. Here is some code 
to open a file: 

segment . data 
fd : dd 0 
name : db "sample"  , 0  

segment . text 
extern open 
lea rdi , [name] pathname 
mov esi , Ox42 ' read-write create 
mov rdx , 600o read-write for me 
call open 
cmp eax , 0 
j l  error failed to open 
mov [fd] ' eax 

) 

1 2 . 3 . 2  read and write system calls 

The system calls to read and write data to files are read and write. 
Their prototypes are quite similar: 



134 CHAPTER 12. SYSTEM CALLS 

int read ( int fd ,  void *data , long count ) ;  
int write ( int fd , void *data,  long count ) ;  

The data array can be any type of data. Whatever the type is, the count 
is the number of bytes to read or write. Both functions return the number 
of bytes read or written. An error is indicated by returning -1  and setting 
the extern variable errno to an integer indicating the type of error. You 
can use the perror function call to print a text version of the error. 

1 2 .3 . 3  lseek system call 

When reading or writing files, it is sometimes necessary to position to 
a specific spot in the file before reading or writing. An example would 
be writing record number 1000 from a file with records which are 512 
bytes each. Assuming that record numbers begin with 0, then record 
1000 would start at byte position 1000 * 512  = 512000. It can be very 
quick to position to 5 12000 and write 512  bytes. This is also easier than 
reading and writing the whole file. 

The lseek system call allows you to set the current position for read
ing or writing in a file. Its prototype is 

long lseek ( int fd ,  long off set , int whence ) ;  

The off set parameter is frequently simply the byte position in the file, 
but the meaning of off set depends on the value of whence.  If whence 
is 0, then off set is the byte position. If whence is 1 ,  then offset is 
relative to the current position. If whence is 2, then offset is relative to 
the end of file. The return value from lseek is the position of the next 
read or write for the file. 

Using lseek with off set 0 and whence equal to 2 ,  lseek will return 
a byte position 1 greater than the last byte of the file. This is an easy 
way to determine the file size. Knowing the size, you could allocate an 
array and read the entire file (as long as you have enough RAM ) . 

mov edi , [fd] 
xor esi , esi set offset to 0 
mov edx , 2 set whence to 2 
call lseek determine file size 
mov [size] , rax 



12.3. C WRAPPER FUNCTIONS 

mov edi , rax 
cal l  malloc 
mov [data] , rax 
mov edi , [fd] 
xor esi , esi 
xor edx , edx 
call lseek 
mov edi , [fd] 
mov esi , [data] 
mov edx , [size] 
call read 

1 2.3.4 close system call 

135 

allocate an array for the file 

set offset to 0 
set whence to 0 
seek to start of f ile 

read the ent ire f ile 

When you are done reading or writing a file you should close it. The only 
parameter for the close system call is the file descriptor for the file to 
close. If you exit a program without closing a file, it will be closed by 
the operating system. Data read or written using file descriptors is not 
buffered in the user program, so there will not by any unwritten data 
which might be lost . This is not true for using FILE pointers which can 
result in lost data if there is no close. The biggest advantages to closing 
files are that it reduces overhead in the kernel and avoids running into 
the per-process limit on the number of open files. 

mov edi , [f d] 
call close 



136 CHAPTER 12. SYSTEM CALLS 

Exercises 

1 .  Write a copy program using syscall and a second copy program 
using the equivalent library wrapper functions. Your copy program 
should accept 2 file names and an integer on the command line. The 
first name is the name of the input file and the second is the name 
of the output file. The number on the command line is the number 
of bytes to allocate for an array for input and output. Making the 
size a multiple of 4096 bytes will make a very slight performance 
improvement. You might experiment to discover which size works 
more rapidly for your tests. The challenge is that for many files, 
both input and output files will fit in buffer cache and there will 
be no actual disk I/0 required to read the file and the writing will 
be delayed. Can you measure the difference in time between the 
syscall version and the library version? 



Chapter 1 3  

S tructs 

It is fairly simple to use structs compatible with C by defining a struct 
in yasm. A struct is a compound object which can have data items of 
different types. Let's consider the C struct Customer: 

struct Customer { 
int id ;  

} ;  

char name [64] ; 
char address [64] ; 
int balance ;  

We could access the customer data using assembly code assuming that 
we know the offsets for each item of the struct . 

mov rdi , 136 
call malloc 
mov [c] , rax 
mov [rax] , dword 7 
lea rdi , [rax+4] 
lea rsi ,  [name] 
call strcpy 
mov rax , [c] 
lea rdi , [rax+68] 
lea rsi ,  [address] 
call strcpy 

137 

size of a Customer 

save the address 
set the id 
name f ield 
name to copy to struct 

address field 
address to copy 



138 

13 . 1  

mov 
mov 
mov 

rax , [c] 
edx , [balance] 
[rax+132] , edx 

CHAPTER 13. STRUCTS 

Symbolic names for offsets 

Well that was certainly effective but using specific numbers for offsets 
within a struct is not really ideal. Any changes to the structure will 
require code modification and errors might be made adding up the offsets. 
It is better to have yasm assist you with structure definition. The yasm 
keyword for starting a struct is "struc" . Struct components are defined 
between "struc" and "ends true" . Here is the definition of Customer: 

struc Customer 
id resd 1 
name resb 64 
address resb 64 
balance resd 1 

endstruc 

Using this definition gives us the same effect as using equ to set symbolic 
names for the offsets. These names are globally available, so you would 
not be permitted to have id in multiple structs. Instead you can prefix 
each of these names with a period like this: 

struc Customer 
. id resd 1 
. name resb 64 
. address resb 64 
. balance resd 1 

ends true 

Now we must use "Customer . id" to refer to the offset of the id field. 
A good compromise is to prefix the field names with a short abbreviation 
of the struct name. In addition to giving symbolic names to the offsets, 
yasm will also define Customer _size to be the number of bytes in the 
struct. This makes it easy to allocate memory for the struct. Below is a 
program to initialize a struct from separate variables. 



13. 1 .  SYMBOLIC NAMES FOR OFFSETS 

segment . data 
name db "Calvin" , 0 
address db " 12 Mockingbird Lane 11 , 0 
balance dd 12500 

struc Customer 
c_id resd 1 
c_name resb 64 
c_address resb 64 
c_balance resd 1 

endstruc 
c 

main : 

dq 
segment 
global 
extern 
push 
mov 
sub 
mov 
call 
mov 
mov 
lea 
lea 
call 
mov 
lea 
lea 
call 
mov 
mov 
mov 
xor 
leave 
ret 

0 
. text 
main 
malloc , strcpy 
rbp 
rbp , rsp 
rsp , 32 
rdi , Customer size 
malloc 
[c] , rax ; save the pointer 
[rax+c_id] , dword 7 
rdi , [rax+c_name] 
rsi ,  [name] 
strcpy 
rax , [c] ; restore the pointer 
rdi , [rax+c_address] 
rsi ,  [address] 
strcpy 
rax , [c] ; restore the pointer 
edx , [balance] 
[rax+c_balance] , edx 
eax , eax 

139 

Now this is all great but there is a possible alignment problem versus 
C if we make the address field 1 byte larger. In C this makes the offset of 
balance increase from 132 to 136. In yasm it increases from 132 to 133. 



140 CHAPTER 13. STRUCTS 

It still works but the struct definition does not match the alignment of 
C.  To do so we must place align 4 before the definition of c_balance.  

Another possibility is to have a static variable of type Customer. To 
do this with default data, simply use this 

c istruc Customer 
iend 

If you wish to define the fields, define them all in order. You can shorten 
the data for the strings: 

c istruc Customer 
at c_id , dd 7 
at c_name , db " Calvin" , 0 
at c_address , db " 12 Mockingbird Lane " ,  0 
at c_balance ,  dd 12500 
iend 

13.2 Allocating and using an array of structs 

If you wish to allocate an array of structs, then you need to multiply 
the size of the struct times the number of elements to allocate enough 
space. But the size given by Customer _s ize might not match the value 
from sizeof (struct Customer) in C. C will align each data item on 
appropriate boundaries and will report a size which will result in each 
element of an array having aligned fields. You can assist yasm by adding 
a terminal align X where X represents the size of the largest data item 
in the struct. If the struct has any quad word fields then you need align 
8 to force the _size value to be a multiple of 8. If the struct has no 
quad word byte fields but has some double word fields you need align 
4. Similarly you might need align 2 if there are any word fields. So our 
code to declare a struct (slightly changed) and allocate an array would 
look like this 

segment . data 
struc Customer 

c id resd 1 4 bytes 
c_name resb 65 ' 69 bytes 



13.2. ALLOCATING AND USING AN ARRAY OF STRUCTS 141 

c_address resb 65 134 bytes 
align 4 aligns to 136 

c_balance resd 1 140 bytes 
c_rank resb 1 141 bytes 

align 4 aligns to 144 
endstruc 

customers dq 0 
segment . text 
mov edi , 100 ' for 100 structs 
mul edi , Customer_size 
call malloc 
mov [customers] , rax 

Now to work with each array element we can start with a register 
holding the value of customers and add Customer _size to the register 
after we process each customer. 

segment . data 
format db "%s %s %d" , Ox0a , O  

segment . text 
push r15 
push r14 
mov r15 , 100 counter saved through calls 
mov r14 , [customers] ; po inter saved through calls 

more lea edi , [format] 
lea esi , [r14+c_name] 
lea rdx , [r14+c_address] 
mov rex . [r14+c_balance] 
call print£ 
add r14 , Customer_size 
sub r15 , 1 
j nz more 
pop r14 
pop r15 
ret 



142 CHAPTER 13. STRUCTS 

Exercises 

1 .  Design a struct to represent a set. The struct will hold the maxi
mum set size and a pointer to an array holding 1 bit per possible 
element of the set. Members of the set will be integers from 0 to 
the set size minus 1 .  Write a test program to read commands which 
operate on the set. The commands will be "add" , ''remove" , and 
"test" . Each command will have an integer parameter entered 
with it . Your program will then be able to add elements to the set, 
remove elements to the set and test numbers for membership. 

2. Using the design for sets from exercise 1 ,  write a program to manip
ulate multiple sets. Implement commands "add" , "union" , "print 
and "intersect" . Create 10 sets with size equal to 10000. "add s 
k" will add k to set s. "union s t" will replace set s with s U t .  
"intersect s t" will replace set s with s n t .  "print s" will print 
the elements of s .  

3. Design a struCt to represent large integers . For simplicity use quad 
word arrays as the data for the large integers. Each quad word will 
represent 18 digits of the number. So 1 quad word can store a num
ber up to 999 ,999,999,999 ,999,999. 2 quad words can store a num
ber up to 999,999,999,999,999,999,999,999,999,999,999,999. Imple
ment only positive numbers. Implement addition and multiplication 
(based on addition) . Compute 50! . You are permitted to write a 
main routine in C or C++ which will implement the factorial algo
rithm using assembly code to represent all long arithmetic. 



Chapter 14 

Using the C stream 1/ 0 
functions 

The functions callable from C includes a wide variety of functions in many 
areas including process management, file handling, network communica
tions, string processing and graphics programming. Studying much of 
these capabilities would lead us too far afield from the study of assembly 
language. The stream input and output facilities provide an example of 
a higher level library which is also quite useful in many programs. 

In the chapter on system calls we focused on open, read, v.rri te and 
close which are merely wrapper functions for system calls. In this chap
ter we will focus on a similar collection of functions which do buffered 
I/0. Buffered I/0 means that the application maintains a data buffer for 
an open file. 

Reading using a buffered I/0 system can be more efficient . Let 's 
suppose you ask the buffered I/0 system to read 1 byte. It will attempt 
to read 1 byte from the buffer of already read data. If it must read, 
then it reads enough bytes to fill its buffer - typically 8192 bytes. This 
means that 8192 reads of 1 byte can be satisfied by 1 actual system call. 
Reading a byte from the buffer is very fast . In fact reading a large file is 
over 20 times as fast reading 1 byte at a time using the C stream get char 
function compared to reading one byte at a time using read. 

You should be aware that the operating system also uses buffers for 
open files. When you call read to read 1 byte, the operating system is 
forced by the disk drive to read complete sectors, so it must read at least 

143 



144 CHAPTER 14. USING THE C STREAM I/0 FUNCTIONS 

1 sector (probably 512 bytes) . Most likely the operating system reads 
4096 bytes and saves the data which has been read in order to make use 
of the data. If the operating system did not use buffers, reading 1 byte at 
a time would require interacting with the disk for each byte which would 
be perhaps 10 to 20 times slower than using the buffer. 

The net result from this discussion is that if your program needs to 
read or write small quantities of data, it will be faster to use the stream 
I/0 facilities rather than using the system calls. It is generally possible 
to use the system calls and do your own buffering which is tailored for 
your needs thereby saving time. You will of course pay for this improved 
efficiency by working harder. You must weigh the importance of improved 
performance versus increased labor. 

14. 1 Opening a file 

The function to open a file using the stream I/0 functions is fopen. It , 
like the other stream I/0 functions, begins with the letter "f" to make 
the name distinct the system call wrapper function it resembles. The 
prototype for f open is 

FILE *fopen ( char *pathname , char *mode ) ;  

The file to be opened is named in the first parameter and the mode is 
named in the second parameter. The mode can be any of the values from 
the table below 

r read only mode 
r+ read and write 
w write only, truncates or creates 
w+ read and write, truncates or creates 
a write only, appends or creates 
a+ read and write, appends or creates 

The return value is a pointer to a FILE object. This is an opaque 
pointer in the sense than you never need to know the components of 
the FILE object. Most likely a FILE object is a struct which contains a 
pointer to the buffer for the file and various "house-keeping" data items 
about the file. This pointer is used in the other stream I/0 functions. In 



14.2. FSCANF AND FPRINTF 145 

assembly language it is sufficient to simply store the pointer in a quad
word and use that quad-word as needed for function calls. Here is some 
code to open a file: 

segment . data 
name db 11 customers . dat 11 , 0  
mode db 1 1w+ II , O  
fp dq 0 

segment . text 
global fopen 
lea rdi , [name] 
lea rsi ,  [mode] 
call fopen 
mov [fp] , rax 

14.2 fscanf and fprintf 

You have encountered scanf and printf in previous code. scanf is a 
function which calls fscanf with a FILE pointer named stdin as its first 
parameter, while printf is a function which calls fprintf with FILE 
pointer stdout as first parameter. The only difference between these 
pairs of functions is that fscanf and fprintf can work with any FILE 
pointer. Their prototypes are 

int fscanf ( FILE *fp , char *format , . . .  ) ;  
int fprintf ( FILE *fp , char *format , . . .  ) ;  

For simple use consult Appendix B which discusses scanf and printf. 
For more information use "man fscanf" or "man fprintf" or consult a 
C book. 

14.3 fgetc and fputc 

If you need to process data character by character, it can be convenient 
to use fget c to read characters and fputc to write characters. Their 
prototypes are 

int fgetc ( FILE *fp ) ;  
int fput c ( int c ,  FILE *fp ) ;  



146 CHAPTER 14. USING THE C STREAM I/0 FUNCTIONS 

The return value of fgetc is the character which has been read, except 
for end of file or errors when it returns the symbolic value EOF which is 
- 1 .  The function fputc writes the character provided in c to the file. It 
returns the same character it has written unless there is an error when it 
returns EOF. 

Fairly often it is convenient to get a character and do something which 
depends on the character read. For some characters you may need to 
give control over to another function. This can be simplified by giving 
the character back to the file stream using ungetc .  You are guaranteed 
only 1 pushed back character, but having 1 character of look-ahead can 
be quite useful. The prototype for ungetc is 

int ungetc ( int c ,  FILE *fp ) ;  

Below is a loop copying a file from one stream to another using fgetc 
and fputc.  

more rnov rdi , [ifp] input file pointer 
call fgetc 
crnp eax , - 1  
j e  done 
rnov rdi , rax 
rnov rs i ,  [ofp] output f ile pointer 
call fputc 
j rnp more 

done : 

14.4 fgets and fputs 

Another common need is to read lines of input and process them line by 
line. The function fgets reads 1 line of text (or less if the array is too 
small) and fputs writes 1 line of text. Their prototypes are 

char *fgets ( char *S , int size , FILE *fp ) ;  
int fputs ( char *s , FILE *fp ) ;  

The first parameter to f gets is an array of characters to receive the 
line of data and the second parameter is the size of the array. The size 
is passed into the function to prevent buffer overflow. fgets will read 



14. 5. FREAD AND FWRITE 147 

up to size - 1 characters into the array. It stops reading when it hits 
a new-line character or end of file. If it reads a new-line it stores the 
new-line in the buffer. Whether it reads a complete line or not , fgets 
always places a 0 byte at the end of the data it has read. It returns s on 
success and a NULL pointer of error or end of file. 

fputs writes the string in s without the 0 byte at the end of the string. 
It is your responsibility to place any required new-lines in the array and 
add the 0 byte at the end. It returns a non-negative number on success 
or EOF on error. 

It can be quite useful following fgets to use sscanf to read data 
from the array. sscanf is like scanf except that the first parameter is an 
array of characters which it will attempt to convert in the same fashion 
as scanf . Using this pattern gives you an opportunity to read the data 
with sscanf , determine that the data was not what you expected and 
read it again with sscanf with a different format string. 

Here is some code which copies lines of text from one stream to an
other, skipping lines which start with a " ;  " .  

more lea rdi , [s] 
mov esi ,  200 
mov rdx , [ ifp] 
call fgets 
cmp rax , 0 
j e  done 
mov al , [s] 
cmp al , ' . ' 

' 

j e  more 
lea rdi , [s] 
mov rsi , [ofp] 
call fputs 
j mp more 

done : 

14.5 fread and fwrite 

The fread and fwri te functions are designed to read and write arrays 
of data. Their prototypes are 



148 CHAPTER 14. USING THE C STREAM I/0 FUNCTIONS 

int fread ( void *p , int size , int nelts , FILE *fp ) ;  
int fwrite ( void *p , int size , int nelts , FILE *fp ) ;  

The first parameter to these functions is an array of any type. The 
next parameter is the size of each element of the array, while the third is 
the number of array elements to read or write. They return the number 
of array elements read or written. In the event of an error or end of file, 
the return value might be less than nel ts or 0 .  

Here is some code to write all 1 00 elements of the customers array 
to a disk file 

mov rdi , [customers] allocated array 
mov esi , Customer_size 
mov edx , 100 
mov rex , [fp] 
call fwrite 

14 .6  fseek and ftell 

Positioning a stream is done using the fseek function, while ftell is used 
to determine the current position. The prototype for these functions are 

int fseek ( FILE *fp , long offset , int whence ) ;  
long ftell ( FILE *fp ) ;  

The second parameter offset of fseek is a byte position value which 
is dependent on the third parameter whence to define its meaning. The 
meaning of whence is exactly like in lseek. If whence is 0, then off set 
is the byte position. If whence is 1 ,  then offset is relative to the current 
position. If whence is 2, then offset is relative to the end of file. 

The return value of fseek is 0 for success and -1 for errors. If there 
is an error the variable errno is set appropriately. The return value of 
ftell is the current byte position in the file unless there is an error. On 
error it returns - 1 .  

Here is a function to write a Customer record to a file. 

void write customer ( FILE *fp , struct Customer *C , 
int record_number ) ;  

segment . text 



14. 7. FCLOSE 

global 
write_customer : 
. fp equ 
. c  equ 
. rec  equ 

push 
mov 
sub 
mov 
mov 
mov 
mul 
mov 
mov 
call 
mov 
mov 
mov 
mov 
call 
leave 
ret 

14.7 fclose 

write_customer 

0 
8 
16  
rbp 
rbp , rsp 
rsp , 32 
[rsp+ . fp] , rdi 
[rsp+ . c] ,  rsi 
[rsp+ . rec] , rdx 
rdx , Customer_size 

save parameters 

rsi ,  rdx 
rdx , 0 
ftell 

2nd parameter to ftell 
; whence 

rdi , [rsp+ . c] 
rsi ,  Customer_size 
rdx , 1 
rex , [rsp+ . fp] 
fwrite 

149 

f close is used to close a stream. This is important since a stream may 
have data in its buffer which needs to be written. This data will be 
written when you call £ close and will be forgotten if you fail to call it. 



150 CHAPTER 14. USING THE C STREAM I/0 FUNCTIONS 

Exercises 

1 .  Write an assembly program which will create a new Customer us
ing the struct definition from this chapter. Your program should 
prompt for and read the file name, the customer name, address, 
balance and rank fields. Then your code should scan the data in 
the file looking for an empty position. An empty position is a record 
with 0 in the id field. In general the id value will be 1 greater than 
the record number for a record. If there is no empty record, then 
add a new record at the end of the file. Report the customer's id. 

2. Write an assembly program to update the balance for a customer. 
The program should accept from the command line the name of 
a data file, a customer id and an amount to add to the balance 
for that customer. The customer's id is 1 greater than the record 
number. Report an error if the customer record is unused (id = 0) . 

3 .  Write an assembly program to read the customer data in a file, sort 
it by balance and print the data in increasing balance order. You 
should open the file and use fseek to seek to the end and use ftell 
to determine the number of records in the file. It should allocate an 
array large enough to hold the entire file, read the records one at 
a time, skipping past the unused records (id = 0) . Then it should 
sort using qsort. You can call qsort using 

qsort ( struct Customer * C , int count , int size , compare) ;  

The count parameter is the number of structs to sort and size is 
the size of each in bytes. The compare parameter is the address 
of a function which will accept 2 parameters, each a pointer to a 
struct Customer. This function will compare the balance fields 
of the 2 structs and return a negative, 0 ,  or positive value based on 
the order of the 2 balances. 



Chapter 1 5  

D ata structures 

Data structures are widely used in application programming. They are 
frequently used for algorithmic purposes to implement structures like 
stacks, queues and heaps. They are also used to implement data storage 
based on a key, referred to as a "dictionary" . In this chapter we discuss 
implementing linked lists, hash tables, doubly-linked lists and binary trees 
in assembly. 

One common feature of all these data structures is the use of structure 
called a "node" which contains data and one or more pointers to other 
nodes. The memory for these nodes will be allocated using malloc.  

15 . 1  Linked lists 

A linked list is a structure composed of a chain of nodes. Below is an 
illustration of a linked list: 

I ·I 4 1  I �1 19 1 + 
You can see that the list has 4 nodes. Each node has a data value 

and a pointer to another node. The last node of the list has a NULL 
pointer (value 0) , which is illustrated as a filled circle. The list itself is 
represented as a pointer. We can illustrate the list more completely by 
placing the list 's first pointer in a box and giving it a name: 

This list has no obvious order to the data values in the nodes. It is 

151  



152 CHAPTER 15. DATA STRUCTURES 

list 

D -1 121 I -1 4 I ·l 16 l L--.----'L--.--' 

either unordered or possibly ordered by time of insertiOJ1. It is very easy 
to insert a new node at the start of a list, so the list could be in decreasing 
time of insertion order. 

The list is referenced using the pointer stored at the memory location 
labeled list . The nodes on the list are not identified with specific labels 
in the code which maintains and uses the list. The only way to access 
these nodes is by using the pointers in the list. 

1 5 . 1 . 1  List node structure 

Our list node will have 2 fields: a data value and a pointer to the next 
node. The yasm structure definition is 

struc node 
n_value resq 1 
n_next resq 1 

align 8 
ends true 

The alignment instruction is not needed with 2 quad-words in the 
structure, but it may protect us from confusion later. 

1 5 . 1 . 2  Creating an empty list 

The first decision in designing a container structure is how to represent 
an empty container. In this linked list design we will take the simplest 
choice of using a NULL pointer as an empty list . Despite this simplicity 
it may be advantageous to have a function to create an empty list. 

newlist : 
xor eax , eax 
ret 



15. 1 .  LINKED LISTS 153 

1 5 . 1 . 3 Inserting a number into a list 

The decision to implement an empty list as a NULL pointer leaves a small 
issue for insertion. Each insertion will be at the start of the list which 
means that there will be a new pointer stored in the list start pointer for 
each insertion. There are 2 possible ways to cope with this. One way is to 
pass the address of the pointer into the insertion function. A second way 
is to have the insertion pointer return the new pointer and leave it to the 
insertion code to assign the new pointer upon return. It is less confusing 
to dodge the address of a pointer problem. Here is the insertion code: 

insert : 
. list 
. k  

list = insert ( l ist , k ) ;  

equ 
equ 
push 
mov 
sub 
mov 
mov 
mov 
call 
mov 
mov 
mov 
mov 
leave 
ret 

0 
8 
rbp 
rbp , rsp 
rsp , 16 
[rsp+ . list] , rdi 
[rsp+ . k] , rsi 
edi , node_size 
malloc 
r8 , [rsp+ . list] 
[rax+n_next] , r8 
r9 , [rsp+ . k] 
[rax+n_value] , r9 

1 5 . 1 .4 Traversing the list 

save list pointer 
and k on stack 

rax will be node pointer 
get list pointer 
save pointer in node 
get k 
save k in node 

Traversing the list requires using an instruction like 

mov rbx , [rbx+n_next] 

to advance from a pointer to one node to a pointer to the next node. We 
start by inspecting the pointer to see if it is NULL. If it is not then we 
enter the loop. After processing a node we advance the pointer and repeat 
the loop if the pointer is not NULL. The print function below traverses 



154 CHAPTER 15. DATA STRUCTURES 

the list and prints each data item. The code shows a good reason why it 
is nice to have a few registers protected in calls. We depend on rbx being 
preserved by printf .  

print : 
segment . data 

. print_fmt : 

. newline 
db 1 1%ld 1 1 , 0  

db OxOa , O  
segment . t ext 

. rbx equ 0 

. more 

. done 

push rbp 
mov 
sub 
mov 
cmp 
j e  
mov 
lea 
mov 

rbp , rsp 
rsp , 16 
[rsp+ . rbx] , rbx 
rdi , 0 
. done 
rbx , rdi 
rdi , [ . print_fmt] 
rsi , [rbx+n_value] 

xor eax , eax 
call printf 
mov rbx , [rbx+n_next] 
cmp rbx , 0 
jne 
lea 
xor 
call 
mov 
leave 
ret 

. more 
rdi , [ . newline] 
eax , eax 
printf 
rbx , [rsp+ . rbx] 

subtract multiples of 1 6  
save old value o f  rbx 

restore rbx 

Last we have a main function which creates a list, reads values us
ing scanf, inserts the values into the list and prints the list after each 
insertion. 

main : 



15. 1 .  LINKED LISTS 155 

. l ist equ 0 

. k  equ 8 
segment . data 

. scanf fmt : 
db "%ld" , 0  
segment . text 
push rbp 
mov rbp , rsp 
sub rsp , 16 
call new l ist 
mov [rsp+ . list] , rax 

. more lea rdi , [ .  scanf _fmt] 
lea rsi ,  [rsp+ . k] 
xor eax , eax 
call scanf 
cmp rax , 1 
j ne . done 
mov rdi , [rsp+ . list] 
mov rsi ,  [rsp+ . k] 
call insert 
mov [rsp+ . list] , rax 
mov rdi , rax 
call print 
jmp . more 

. done leave 
ret 

Here is a sample session using the program, entering the numbers 1 
through 5: 

1 
1 
2 
2 1 
3 
3 2 1 
4 
4 3 2 1 



156 CHAPTER 15. DATA STRUCTURES 

5 
5 4 3 2 1 

You can see the the most recently printed number is at the first of the 
list. By adding a function to get and remove (pop) the first element of 
the list, we could turn this into a stack. This is one of the exercises for 
this chapter. 

15 .2  Doubly-linked lists 

A doubly-linked list has 2 pointers for each node: one points to the next 
node and one points to the previous node. It becomes quite simple to 
manage a doubly-linked list if you make the list circular and if you retain 
an unused cell at the start of the list. Here is an example list with 4 data 
nodes: 

list 

X 4 1 2  1 6  1 9  

c 
-

� 

We see that the variable list points to the first node of the list, called 
the "head node" . The head node has a value, but we never use the value. 
The top pointer in each node points to the next node in the list and 
the bottom pointer points to the previous node in the list. The previous 
pointer of the head node is the last node in the list. This makes this list 
capable of implementing a stack (last-in first-out) , a queue (first-in first
out) or a double-ended queue (deque) . The primary advantage of this 
design is that the list is never really empty - it can be logically empty but 
the head node remains. Furthermore, once a list is created, the pointer 
to the head node never changes. 



15.2. DOUBLY-LINKED LISTS 

1 5 . 2 . 1  Doubly-linked list node structure 

157 

Our list node will have 3 fields: a data value, a pointer to the next node 
and a pointer to the previous node. The yasm structure definition is 

struc node 
n_value resq 1 
n_next resq 1 
n_prev resq 1 

align 8 
ends true 

1 5 . 2 . 2  Creating a new list 

The code for creating a new doubly-linked list allocates a new node and 
sets its next and previous pointers to itself. The calling function receives 
a pointer which does not change during the execution of the program. 
Here is the creation code: 

newlist : 
list = newlist ( ) ; 

push rbp 
mov rbp , rsp 
mov edi , node size 
call malloc 
mov [rax+n_next] , rax 
mov [rax+n_prev] , rax 
leave 
ret 

When it returns the empty list looks like the diagram below: 

list 



158 CHAPTER 15. DATA STRUCTURES 

15.2.3 Inserting at the front of the list 

To insert a new node at the front of the list you need to place the head 
node's next pointer in the new node's next slot and place the previous 
pointer from head's next into the new node's previous slot . After doing 
that you can make the head node point forward to the new node and 
make the head's former next point backwards to the new node. There 
are illustrated in the diagram below. The old links are in dashed lines 
and the new links are numbered, with bold lines. 

list 

4 

One of the elegant features of the doubly-linked circular list is the 
elimination of special cases. Inserting the first node is done with exactly 
the same code as inserting any other node. 

The code for insertion is 

insert ( list , k ) ; 
insert : 
. list equ 0 
. k  equ 8 

push rbp 
mov rbp , rsp 
sub rsp , 16  
mov [rsp+ . list] , rdi save list pointer 
mov [rsp+ . k] , rsi and k on stack 
mov edi , node_size 
call malloc rax will be node pointer 
mov r8 , [rsp+ . list] get list pointer 
mov r9 , [r8+n_next] get head ' s  next 
mov [rax+n_next] , r9 set new node ' s  next 
mov [rax+n_prev] , r8 set new node ' s  prev 
mov [r8+n_next] , rax set head ' s  next 
mov [r9+n_prev] , rax set new node ' s  next ' s  prev 



15.2. DOUBLY-LINKED LISTS 

mov 
mov 
leave 
ret 

r9 , [rsp+ . k] 
[rax+n_value] , r9 

1 5 . 2 . 4  List traversal 

159 

get k 
save k in node 

List traversal of a doubly-linked list is somewhat similar to traversal of 
a singly-linked list. We do need to skip past the head node and we need 
to test the current pointer against the pointer to the head node to detect 
the end of the list. Here is the code for printing the list: 

print ( list ) ;  
print : 

segment . data 
. print_fmt : 

db "%ld " , 0 
. newline : 

db OxOa , O  
segment . text 

. list equ 0 

. rbx equ 8 
push rbp 
mov rbp , rsp 
sub rsp , 16  
mov [rsp+ . rbx] , rbx 
mov [rsp+ . list] , rdi 
mov rbx , [rdi +n_next] 
cmp rbx , [rsp+ . list] 
j e  . done 

. more lea rdi , [ .  print_fmt] 
mov rsi ,  [rbx+n_ value] 
call printf 
mov rbx , [rbx+n_next] 
cmp rbx , [rsp+ . list] 
j ne . more 

. done lea rdi , [ . newline] 
call printf 



160 

mov 
leave 
ret 

CHAPTER 1 5. DATA STRUCTURES 

rbx , [rsp+ . rbx] 

15 .3  Hash tables 

A hash table is an efficient way to implement a dictionary. The basic 
idea is that you compute a hash value for the key for each item in the 
dictionary. The purpose of the hash value is to spread the keys throughout 
an array. A perfect hash function would map each key to a unique location 
in the array used for hashing, but this is difficult to achieve. Instead we 
must cope with keys which "collide" . 

The simplest way to cope with collisions is to use a linked list for each 
location in the hash array. Consider the illustration below: 

0 

1 
2 
3 
4 
5 
6 
7 
8 

In this hash table, keys 12 ,  4, 16 and 9 all have hash values of 1 and 
are placed on the list in location 1 of the hash array. Keys 13 and 8 both 
have hash values 3 and are placed on the list in location 3 of the array. 
The remaining keys are mapped to 5 and 7. 

One of the critical issues with hashing is to develop a good hashing 
function. A hashing function should appear almost random. It must 
compute the same value for a particular key each time it is called for the 
key, but the hash values aren't really important - it 's the distribution of 
keys onto lists which matters. We want a lot of short lists. This means 
that the array size should be at least as large as the number of keys 
expected. Then, with a good hash function, the chains will generally be 



15.3. HASH TABLES 

quite short . 

15.3.1 A good hash function for integers 

161 

It is generally recommended that a hash table size be a prime number. 
However this is not very important if there is no underlying pattern to the 
numbers used as keys. In that case you can simply use n mod t where n 

is the key and t is the array size. If there is a pattern like many multiples 
of the same number, then using a prime number for t makes sense. 

Here is the hash function for the example code: 

hash 
i = hash ( n ) ;  
mov 
and 
ret 

rax , rdi 
rax , Oxff 

The table size is 256 in the example, so using and gives n mod 256. 

15.3.2 A good hash function for strings 

A good hash function for strings is to treat the string as containing poly
nomial coefficients and evaluate p( n) for some prime number n .  In the 
code below we use the prime number 191 in the evaluation. After evalu
ating the polynomial value, you can perform a modulus operation using 
the table size (100000 in the sample code) . 

int hash ( unsigned char *S ) 
{ 

unsigned long h = 0 ;  
int i = O ·  , 

while ( s [i] ) { 
h = h* 191 + s [i]  ; 
i++ ; 

} 
return h % 100000 ; 

} 



162 CHAPTER 1 5. DATA STRUCTURES 

1 5 . 3 . 3  Hash table node structure and array 

In the sample hash table the table size is 256, so we need an array of 
256 NULL pointers when the program starts. Since this is quite small, 
it is implemented in the data segment. For a more realistic program, we 

· would need a hash table creation function to allocate an array and fill it 
with O's. Below is the declaration of the array and the structure definition 
for the linked lists at each array location . 

segment . data 
table times 256 dq 0 

struc node 
n_value resq 1 
n_next resq 1 

align 8 
ends true 

1 5 .3 .4 Function to find a value in the hash table 

The basic purpose of a hash table is to store some data associated with 
a key. In the sample hash table we are simply storing the key. The find 
function below searches through the hash table looking for a key. If it is 
found, the function returns a pointer to the node with the key. If it is 
not found, it returns 0. A more realistic program would probably return 
a pointer to the data associated with the key. 

The f ind function operates by calling hash to compute the index in 
the hash array for the linked list which might hold the key being sought: 
Then the function loops through the nodes on the list looking for the key. 

p = f ind ( n ) ; 
p = 0 if not found 

f ind : 
. n  equ 0 

push rbp 
mov rbp , rsp 
sub rsp , 1 6  
mov [rsp+ . n] , rdi 
call hash 



15.3. HASH TABLES 163 

mov rax , [table+rax*8] 
mov rdi , [rsp+ . n] 
cmp rax , 0 
j e  . done 

. more cmp rdi , [rax+n_ value] 
j e  . done 
mov rax , [rax+n_next] 
cmp rax , 0 
j ne . more 

. done leave 
ret 

1 5 . 3 . 5  Insertion code 

The code to insert a key into the hash table begins by calling find to avoid 
inserting the key more than once. If the key is found it skips the insertion 
code. If the key is not found, the function calls hash to determine the 
index for the linked list to add the key to. It allocates memory for a new 
node and inserts it at the start of the list. 

insert ( n ) ; 
insert : 
. n  equ 0 
. h  equ 8 

push rbp 
mov rbp , rsp 
sub rsp , 16  
mov [rsp+ . n] , rdi 
call find 
cmp rax , 0 
jne . f ound 
mov rdi , [rsp+ . n] 
call hash 
mov [rsp+ . h] , rax 
mov rdi , node_size 
call  malloc 
mov r9 , [rsp+ . h] 
mov r8 , [ table+r9*8] 



164 

mov 
mov 
mov 
mov 

CHAPTER 1 5. DATA STRUCTURES 

[rax+n_next] , r8 
r8 , [rsp+ . n] 
[rax+n_value] , r8 
[table+r9*8] , rax 

. found leave 
ret 

1 5 . 3 .6 Print ing the hash table 

The print function iterates through the indices from 0 through 255, 
printing the index number and the keys on each non-empty list. It uses 
registers r12 and r13 for safe storage of a loop counter to iterate through 
the locations of the hash table array and for a pointer to loop through the 
nodes on each linked list. This is more convenient than using registers 
which would require saving and restoring around each printf call. It 
does require pushing and popping these 2 registers at the start and end 
of the function to preserve them for calling functions. Note that pushing 
and popping 16 bytes is necessary to preserve the proper stack alignment. 

You will notice that the code switches back and forth between the data 
and text segments so that printf format strings will be placed close to 
their point of use in the code. 

print : 
push rbp 
mov 
push 
push 

rbp , rsp 
r12 
r13 

xor r12 , r12  
. more_ table : 

i :  integer counter for table 
p :  pointer for list at table [i] 

mov r13 , [table+r12*8] 
cmp r13 , 0 
j e  . empty 
segment . data 

. print 1  db " list %3d : " , 0 
segment . text 
lea rdi , [ . print 1] 
mov rsi , r12 
call printf 



15.3. HASH TABLES 165 

. more_list : 
segment . data 

. print2 db "%ld 11 , 0  
segment . text 
lea rdi , [ .  print2] 
mov rsi ,  [r13+n_ value] 
call printf 
mov r13 , [r13+n_next] 
cmp r13 , 0 
jne . more_l ist 
segment . data 

. print3 db OxOa , O  
segment . text 
lea rdi , [ . print3] 
call  printf 

. empty inc r12 
cmp r12 , 256 
j l  . more_ table 
pop r13 
pop r12  
leave 
ret 

1 5 . 3 . 7  Testing the hash table 

The main function for the hash table reads numbers with scanf , inserts 
them into the hash table and prints the hash table contents after each 
insertion: 

main : 
. k  equ 0 

segment . data 
. scanf_fmt : 

db 1 1 %ld" , O  
segment . text 
push rbp 
mov rbp , rsp 
sub rsp , 16 



166 CHAPTER 15. DATA STRUCTURES 

. more lea rdi , [ . scan£ _fmt] 
lea rs i ,  [rsp+ . k] 
.call scanf 
cmp rax , 1 
j ne . done 
mov rdi , [rsp+ . k] 
call insert 
call print 
jmp . more 

. done leave 
ret 

Below is the printing of the hash table contents after inserting 1 ,  2, 
3, 4 ,  5,  256, 257, 258, 260, 513,  1025 and 1028. 

l ist 0 :  256 
list 1 :  1025 513 257 1 
list 2 :  258 2 
list 3 :  3 
list 4 :  1028 260 4 
list 5 :  5 

15 .4 Binary trees 

A binary tree is a structure with possibly many nodes. There is a single 
root node which can have left or right child nodes (or both) . Each node 
in the tree can have left or right child nodes (or both) . 

Generally binary trees are built with an ordering applied to keys in 
the nodes. For example you could have a binary tree where every node 
divides keys into those less than the node's key (in the left sub-tree) 
and those greater than the node's key (in the right sub-tree) . Having an 
ordered binary tree, often called a binary search tree, makes it possible 
to do fast searches for a key while maintaining the ability to traverse the 
nodes in increasing or decreasing order. 

Here we will present a binary tree with integer keys with the ordering 
being lower keys on the left and greater keys on the right. First are the 
structures used for the tree. 



15.4. BINARY TREES 167 

1 5 .4 . 1  Binary tree node and tree structures 

The nodes in the binary tree have an integer value and two pointers. The 
structure definition below uses a prefix convention in naming the value 
field as n_value and the left and right pointers as n_left and n_right . 

struc node 
n_value resq 1 
n_left resq 1 
n_right resq 1 

align 8 
ends true 

It would be possible to simply use a pointer to the root node to rep
resent the tree. However we could add features to the tree, like node 
deletion or balancing, which could change the root of the tree. It seems 
logical to store the root in a structure insulating us from future root 
changes in a tree. We have also included in the tree structure a count of 
the number of nodes in the tree. 

struc tree 
t_count resq 1 
t_root resq 1 

align 8 
ends true 

1 5.4.2 Creating an empty tree 

The new_ tree function allocates memory for a tree structure and sets 
the count and the root of the new tree to 0 .  By having the root of the tree 
in a structure the code using the binary tree always refers to a particular 
tree using the pointer returned by new_tree . 

new_ tree : 
push 
mov 
mov 
call 
xor 

rbp 
rbp , rsp 
rdi , tree size 
malloc 
edi , edi 



168 

mov 
mov 
leave 
ret 

CHAPTER 1 5. DATA STRUCTURES 

[rax+t_root] , rdi 
[rax+t_count] , rdi 

1 5 .4.3 Finding a key in a tree 

To find a key in a binary search tree you start with a pointer to the 
root node and compare the node's key with the key being sought. If it's 
a match you're done. If the target key is less than the node's key you 
change your pointer to the node's left child. If the target key is greater 
than the node's key you change the pointer to the node's right child. You 
then repeat these comparisons with the new node. If you ever reach a 
NULL pointer, the key is not in the tree. Below is the code for finding 
a key in a binary tree. It returns a pointer to the correct tree node or 
NULL if not found. 

find : 

. more 

. goleft : 

p = f ind ( t ,  n ) ;  
p = 0 if  not found 

push rbp 
mov rbp , rsp 
mov rdi , [rdi +t_root] 
xor eax , eax 
cmp rdi , 0 
j e  . done 
cmp rsi ,  [rdi +n_ value] 
j l  . goleft 
j g  . goright 
mov rax , rsi 
j mp . done 

mov rdi , [rdi +n_left] 
jmp . more 

. goright : 
mov rdi , [rdi+n_right] 
j mp . more 

. done leave 



1 5.4. BINARY TREES 169 

ret 

1 5 .4.4 Inserting a key into the tree 

The first step in inserting a key is to use the find function to see if the 
key is already there. If it is, then there is no insertion. If not, then a new 
tree node is allocated, its value is set to the new key value and its left 
and right child pointers are set to NULL Then it 's time to find where to 
place this in the tree. 

There is a special case for inserting the first node in the tree. If the 
count of nodes in the tree is 0 ,  then the count is incremented and the 
tree's root pointer is set to the new node. 

If the tree is non-empty then you start by setting a current pointer 
to point to the root node. If the new key is less than the current node's 
key, then the new node belongs in the left sub-tree. To handle this you 
inspect the left child pointer of the current node. If it is null, you have 
found the insertion point, so set the left pointer to the pointer of the 
new node. Otherwise update your current node pointer to be the left 
pointer and start comparisons with this node. If the key is not less than 
the current node's key, it must be greater than. In that case you inspect 
the current node's right child pointer and either set it the new node's 
pointer or advance your current pointer to the right child and repeat the 
companson process. 

insert ( t '  n ) ;  
insert : 
. n  equ 0 
. t  equ 8 

push rbp 
mov rbp , rsp 
sub rsp , 16 
mov [rsp+ . t] , rdi 
mov [rsp+ . n] , rsi 
call find 
cmp rax , 0 
j ne . done 
mov rdi , node_s ize 
call malloc 



170 CHAPTER 15. DATA STRUCTURES 

mov rsi , [rsp+ . n] 
mov [rax+n_ value] , rsi 
xor edi , edi 
mov [rax+n_left] , rdi 
mov [rax+n_right] , rdi 
mov rdx , [rsp+ . t] 
mov rdi , [rdx+t_count] 
cmp rdi , 0 
jne . f indparent 
inc qword [rdx+t_count] 
mov [rdx+t_root] , rax 
j mp . done 

. f indparent : 
mov rdx , [rdx+t_root] 

. repeatf ind : 
cmp rsi , [rdx+n_ value] 
j l  . goleft 
mov r8 , rdx 
mov rdx , [r8+n_right] 
cmp rdx , 0 
jne . repeatfind 
mov [r8+n_right] , rax 
jmp . done 

. goleft : 
mov r8 , rdx 
mov rdx , [r8+n_left] 
cmp rdx , 0 
jne . repeatfind 
mov [r8+n_left] , rax 

. done leave 
ret 

1 5 .4.5 Printing the keys in order 

Printing the keys of a binary tree in order is easily performed by using 
recursion. The basic idea is to print the keys in the left sub-tree, print the 
key of the root node and print the keys of the right sub-tree. The use of 



15.4. BINARY TREES 171 

a special tree structure means that there needs to be a different function 
to recursively print sub-trees starting with the pointer to the root. The 
main print function is named print and the recursive function is called 
rec_print . 

rec_print : 
. t  equ 

. print 

push 
mov 
sub 
cmp 
j e  
mov 
mov 
call 
mov 
mov 
segment 
db 
segment 
lea 
call 
mov 
mov 

0 
rbp 
rbp , rsp 
rsp , 16  
rdi , 0 
. done 
[rsp+ . t] , rdi 
rdi , [rdi+n_left] 
rec_print 
rdi , [rsp+ . t] 
rsi ,  [rdi+n_value] 
. data 
"%ld " , 0 
. t ext 
rdi , [ . print] 
printf 
rdi , [rsp+ . t] 
rdi , [rdi+n_right] 

call rec_print 
. done leave 

ret 

print (t) ; 
print : 

push rbp 
mov rbp , rsp 
mov rdi , [rdi +t_root] 
call rec_print 
segment . data 

. print db OxOa , 0 
segment . text 



172 

lea 
call 
leave 
ret 

CHAPTER 1 5. DATA STRUCTURES 

rdi , [ . print] 
printf 



15.4. BINARY TREES 173 

Exercises 

1 .  Modify the singly-linked list code to implement a stack of strings. 
You can use the C strdup function to make duplicates of strings 
that you insert. Write a main routine which creates a stack and en
ters a loop reading strings. If the string entered equals "pop" , then 
pop the top of the stack and print that value. If the string entered 
equals "print" , then print the contents of the stack. Otherwise push 
the string onto the stack. You code should exit when either scanf 
or fgets fails to read a string. 

2 .  Modify the doubly-linked list code to implement a queue of strings. 
Your main routine should read strings until no more are available. If 
the string entered equals "dequeue" , then dequeue the oldest string 
from the queue and print it . If the string entered equals "print" , 
then print the contents of the queue. Otherwise add the string onto 
the end of the queue. You code should exit when either scanf or 
f gets fails to read a string. 

3 .  Modify the hash table code to implement a hash table where you 
store strings and integers. The string will be the key and the integer 
will be its associated value. Your main routine should read lines 
using fgets and read the text again using sscanf to get a string 
and a number. If there is no number (sscanf returns 1 ) ,  then look 
for the string in the hash table and print its value if it there or else 
print an error message. If there is a string and a number ( sscanf 
returns 2) , then add the string or update the string's value in the 
hash table. Your code should exit when fgets fails to read a string. 

4 .  Implement a binary tree of strings and use it to read a file of text 
using fgets and then print the lines of text in alphabetical order. 



174 CHAPTER 15. DATA STRUCTURES 



Chapter 1 6  

High performance assembly 
• 

programming 

In this chapter we discuss some strategies for writing efficient x86-64 
assembly language. The gold standard is the efficiency of implementations 
written in C or C++ and compiled with a good optimizing compiler. The 
author uses gee which produces executable code which is hard to beat . 
Beating the compiler requires understanding your problem very well and 
knowing the instruction set very well. Furthermore you will need to use 
some strategy or feature which is not used by the compiler. 

16 . 1 General optimization strategies 

There are quite a few possible strategies for achieving high performance. 
Many of these strategies are aggressively applied by modern compilers. 
Some of these strategies can be profitably used in high level languages. 
Here is a list of possible strategies: 

• use a better algorithm 

• use C or C++ 

• make efficient use of cache 

• common subexpression elimination 

175 



176CHAPTER 16. HIGH PERFORMANCE ASSEMBLY PROGRAMMING 

• strength reduction 

• use registers efficiently 

• use fewer branches 

• convert loops to branch at the bottom 

• unroll loops 

• merge loops 

• split loops 

• interchange loops 

• move loop invariant code outside loops 

• remove recursiOn 

• eliminate stack frames 

• inline functions 

• eliminate dependencies to allow super-scalar execution 

• use specialized instructions 

16 .2  Use a better algorithm 

The most important optimization strategy is to use a better algorithm. It 
would be pointless to spend many hours tuning shell sort, when you could 
use the qsort function within minutes and achieve better performance . . 
Even better still would be to write C++ code and use the STL sort 
function. If you want to program efficiently you must become an expert 
in data structures and algorithms. 

If you want to implement a dictionary you need to consider using a 
hash table. A hash table of reasonable size has 0(1) expected time for 
finding a key. A red-black tree has guaranteed O (lg n) expected lookup 
time. However if you need to have ordered access to the keys in addition 
to simply finding keys, then a red-black tree is a good choice. 



16.3. USE C OR C++ 177 

Tuning code in assembly language will not convert an O(n2) algorithm 
into an O(n lg n) algorithm. Tuning can make things faster by some 
constant factor. Only a better algorithm can reduce the complexity. 

16.3 Use C or C++ 

This suggestion may seem a little crazy, but you can use a compiler for a 
variety of purposes. First there is probably a large part of your application 
which is not worth optimizing and you could write that code in C or C++ 
and save time, while achieving possibly the same performance. Generally 
a small percentage of your code will consume a large percentage of the 
time. You might need to use a profiler to help locate the time-consuming 
parts. It doesn't matter much if you have a process consuming several 
hours of CPU time for you to tune a part of the program which consumes 
10 seconds. 

Second you should write a C version of your code and compare your 
code versus C to learn whether you have done better than the compiler. 
If you can't beat the compiler, then why use assembly language? Your 
goal in using assembly is to make things run faster. The goal should not 
be to write assembly code to prove that you can do it. 

Finally you can use the -S option of gee to have it produce an assembly 
language file. Studying this generated code may give you some ideas 
about how to write efficient assembly code. 

16 .4  Efficient use of  cache 

One of the goals in high performance computing is to keep the processing 
units of the CPU busy. A modern CPU like the Intel Core i7 operates at 
a clock speed around 3 GHz while its main memory maxes out at about 
21  GB/sec. If your application ran strictly from data and instructions in 
memory using no cache, then there would be roughly 7 bytes available 
per cycle. The CPU has 4 cores which need to share the 2 1  GB/sec, so 
we're down to about 2 bytes per cycle per core from memory. Yet each of 
these cores can have instructions being processed in 3 processing sub-units 
and 2 memory processing sub-units. Each CPU can retire 4 instructions 
per cycle. The same is true for the upcoming AMD Bulldozer CPUs It 



178CHAPTER 16. HIGH PERFORMANCE ASSEMBLY PROGRAMMING 

requires much more than 2 bytes per cycle to keep instructions flowing in 
a modern CPU. To keep these CPU s fed requires 3 levels of cache. 

I performed a short test to illustrate the effect of main memory access 
versus cache on a Core i7 CPU. The test consisted of executing 10 billion 
exclusive or operations on quad-words in memory. In the plot below you 
can see that the time depends heavily on the array size. With an array 
of size of 8000 bytes, the time as 1 .  5 seconds. The time steadily grows 
through the use of the 8 MB of cache. When the size is 80 million bytes 
the cache is nearly useless and a maximum of about 5. 7 seconds is reached. 

Time to Compute XOR 

le+06 le+07 le+08 
Array Size in Bytes 

le+lO 

A prime example of making efficient usc of cache is in the implemen
tation of matrix multiplication. Straight forward matrix multiplication 
is O(n3) where there are n rows and n columns of data. It is commonly 
coded as 3 nested loops. However it can be broken up into blocks small 
enough for 3 blocks to fit in cache for a nice performance boost. Below 
are MFLOPS ratings for various block sizes for multiplying 2 1 024x1024 
matrices in a C program. There is considerable room for improvement by 
using assembly language to take advantage of SSE or AVX instructions. 



16.5. COMMON SUBEXPRESSION ELIMINATION 

1024x1024 Matrix Multiplication 

0o�------�-------5�00------��------1�000� 
Block size 

16 .5  Common subexpression elimination 

179 

Common subexpression elimination is generally performed by optimiz
ing compilers. If you are to have any hope of beating the compiler, you 
must do the same thing. Sometimes it may be hard to locate all com
mon subexpressions. This might be a good time to study the compiler's 
generated code to discover what it found. The compiler is tireless and 
efficient at its tasks. Humans tend to overlook things. 

16 .6  Strength reduction 

Strength reduction means using a simpler mathematical technique to get 
an answer. It is possible to computer x3 using pow, but it is probably 
faster to compute X*X*X. If you need to compute x4,  then do it in stages 

x2 = x * x ;  
x4 = x2 * x2 ; 

If you need to divide or multiply an integer by a power of 2 ,  this can 
be done more quickly by shifting. If you need to divide more than one 
floating point number by x, compute 1 /x and multiply. 



180CHAPTER 16. HIGH PERFORMANCE ASSEMBLY PROGRAMMING 

16 .7  Use registers efficiently 

Place commonly used values in registers. It is nearly always better to 
place values in registers. I once wrote a doubly nested loop in 32 bit 
mode where I had all my values in registers. gee generated faster code by 
using the stack for a few values. TheRe Rtack values probably remained in 
the level 1 cache and were almost as good as being in registers. Testing 
tells the truth. 

16 .8  Use fewer branches 

Modern CPUs make branch predictions and will prepare the pipeline 
with some instructions from one of the 2 possibilities when there is a 
conditional branch. The pipeline will stall when this prediction is wrong, 
so it will help to try to make fewer branches. Study the generated code 
from your compiler. It will frequently reorder the assembly code to reduce 
the number of branches. You will learn some general techniques from the 
compiler. 

16 .9  Convert loops to branch at the bottom 

If you code a while loop as written, there will be a conditional jump at 
the top of the loop to branch past the loop and an unconditional jump 
at the bottom of the loop to get back to the top. It is always possible to 
transform the loop have a conditional branch at the bottom. You may 
need a one time use conditional jump before the top of the loop to handle 
cases where the loop body should be skipped. 

Here is a C for loop converted to a do-while loop. First the for 
loop: 

for ( i = 0 ;  i < n ;  i++ ) { 
x [i] = a [i] + b [i] ; 

} 

Now the do-while loop with an additional if: 

if ( n > 0 ) { 
i = 0 ;  



16. 1 0. UNROLL LOOPS 

} 

do { 
x [i] = a [i] + b [i] ; 
i++ ; 

} while ( i < n ) ;  

181 

Please do not adopt this style of coding in C or C++. The compiler 
will handle for loops quite well. In fact the simplicity of the for loop 
might allow the compiler to generate better code. I presented this in C 
simply to get the point across more quickly. 

16 .10  Unroll loops 

Unrolling loops is another technique used by compilers. The primary 
advantage is that there will be fewer loop control instructions and more 
instructions doing the work of the loop. A second advantage is that 
the CPU will have more instructions available to fill its pipeline with a 
longer loop body. Finally if you manage to use registers with little or 
no dependencies between the separate sections of unrolled code, then you 
open up the possibility for a super-scalar CPU (most modern CPUs) to 
execute multiple original iterations in parallel. This is considerably easier 
with 16 registers than with 8. 

Let 's consider some code to add up all the numbers in an array of 
quad-words. Here is the assembly code for the simplest version: 

segment . text 
global add_ array 

add_array : 
xor eax , eax 

. add_words : 
add rax , [rdi] 
add rdi , 8 
dec rsi 
j g  . add_words 
ret 

Here is a version with the loop unrolled 4 times: 



182CHAPTER 1 6. HIGH PERFORMANCE ASSEMBLY PROGRAMMING 

segment . text 
global add_ array 

add_array : 
push r15 
push r14 
push r13 
push r12 
push rbp 
push rbx 
xor eax , eax 
mov rbx , rax 
mov rex , rax 
mov rdx , rax 

. add words : 
add rax , [rdi] 
add rbx , [rdi+8] 
add rex , [rdi+16] 
add rdx , [rdi+24] 
add rdi , 32 
sub rsi , 4 
j g  . add_words 
add rex , rdx 
add rax , rbx 
add rax , rex 
pop rbx 
pop rbp 
pop r12 
pop r13 
pop r14 
pop r15 
ret 

There may have been some way to use fewer callee-save registers, 
but the choices I made simplified the coding. In the unrolled code I am 
accumulating partial sums in rax, rbx, rex and rdx. These partial sums 
are combined after the loop. Executing a test program with 1000000 
calls to add up an array of 10000 quad-words took 3.9 seconds for the 
simple version and 2.44 seconds for the unrolled version. There is so little 



1 6. 1 1 .  MERGE LOOPS 183 

work to do per data element that the 2 programs start becoming memory 
bandwidth limited with large arrays, so I tested a size which fit easily in 
cache. 

16 . 1 1  Merge loops 

If you have 2 for loops iterating over the same sequence of values and 
there is no dependence between the loops, it seems like a no-brainer to 
merge the loops. Consider the following 2 loops: 

for ( i = 0 ;  i < 1000 ; i++ ) a [i] = b [i] + c [i] ; 
for ( j = 0 ;  j < 1000 ; j ++ ) d [j ]  = b [j ]  - c [j ] ; 

This can easily be merged to get: 

for ( i = 0 ;  i < 1000 ; i++ ) { 
a [i] = b [i] + c [i] ; 
d [i] = b [i] - c [i] ; 

} 
In general merging loops can increase the size of a loop body, decreas

ing the overhead percentage and helping to keep the pipe�ne full. In 
this case there is additional gain from loading the values of b and c once 
rather than twice. 

16 .12  Split loops 

We just got through discussing how merging loops was a good idea. Now 
we are going to learn the opposite - well for some loops. If a loop is op
erating on 2 independent sets of data, then it could be split into 2 loops. 
This can improve performance if the combined loop is exceeding the cache 
capacity. There is a trade-off between better cache usage and more in
structions in the pipeline. Sometime merging is better and sometimes 
splitting is better. 

16 .13 Interchange loops 

Suppose you wish to place O's in a 2-dimensional array in C. You have 2 
choices: 



184CHAPTER 16. HIGH PERFORMANCE ASSEIVIBLY PROGRAMMING 

f or ( i = O ·  i < n ·  i++ ) { ' ' 

for ( j = 0 ;  j < n ·  j ++ ) { ' 

X [i] [j ] = 0 ;  
} 

} 

or 

for ( j = 0 ;  j < n · ' j++ ) { 
for ( i = 0 ;  i < n ·  ' i++ ) { 

x [iJ [j J = 0 ;  
} 

} 

Which is better? In C the second index increments faster than the 
first. This means that x [OJ [1 J  is immediately after x [OJ [OJ . On the 
other hand x [1]  [0] is n elements after x [OJ [0] . When the CPU fetches 
data into the cache it fetches more than a few bytes and cache writes 
to memory behave similarly, so the first loop makes more sense. If you 
have the extreme misfortune of having an array which is too large for 
your RAM, then you may experience virtual memory thrashing with the 
second version. This could turn into a disk access for each array access. 

16 . 14 Move loop invariant code outside loops 

This might be a fairly obvious optimization to perform. It's another case 
where studying the compiler's generated code might point out some loop 
invariant code which you have overlooked. 

16 . 15  Remove recursion 

If it is easy to eliminate recursion then it will nearly always improve 
efficiency. Often it is easy to eliminate "tail" recursion where the last 
action of a function is a recursive call. This can generally be done by 
branching to the top of the function. On the other hand if you try to 
eliminate recursion for a function like quicksort which makes 2 non-trivial 
recursive calls, you will be forced to "simulate" recursion using your own 



16. 16. ELIMINATE STACK FRAMES 185 

stack. This may make things slower. In any case the effect is small, since 
the time spent making recursive calls in quicksort is small. 

16 .16  Eliminate stack frames 

For leaf functions it is not necessary to use stack frames. In fact if you 
have non-leaf functions which call your own functions and no others then 
you can omit the frame pointers from these too. The only real reason for 
frame pointers is for debugging. There is a requirement for leaving the 
stack on 16 byte boundaries, but this only becomes as issue with functions 
which have local variables (on the stack) which participate in aligned 16 
or 32 byte accesses which can either fail or be slower. If you know that 
your own code is not using those instructions, then neither frame pointers 
nor frame alignment are important other than for debugging. 

16. 17 Inline functions 

As part of optimization compilers can in-line small functions. This re
duces the overhead significantly. If you wish to do this, you might be 
int�rested in exploring macros which can make your code easier to read 
and write and operate much like a function which has been in-lined. 

16 . 18 Reduce dependencies to allow super-scalar 
execution 

Modern CPUs inspect the instruction stream looking ahead for instruc
tions which do not depend upon results of earlier instructions. This is 
called "out of order execution" . If there is less dependency in your code, 
then the CPU will execute more instructions out of order and your pro
gram will run more quickly. 

As an example of this I modified the previous add_array function 
with unrolled loops to accumulate all 4 values in the loop into rax. This 
increased the time from 2.44 seconds to 2.75 seconds. 



186CHAPTER 16. HIGH PERFORMANCE ASSEMBLY PROGRAMMING 

16 . 19  Use specialized instructions 

So far we have seen the conditional move instruction which is fairly spe
cialized and also the packed floating point instructions. There are many 
specialized instructions in the x86-64 architecture which are more difficult 
for a compiler to apply. A human can reorganize an algorithm to add the 
elements of an array somewhat like I did with loop unrolling except to 
keep 4 partial sums in one AVX register. Combining the 4 parts of the 
AVX register can be done after the loop. This can make the adding even 
faster, since 4 adds can be done in one instruction. This technique can 
also be combined with loop unrolling for additional performance. This 
will be explored in detail in the SSE and AVX chapters. 



16. 1 9. USE SPECIALIZED INSTRUCTIONS 187 

Exercises 

1 .  Given an array of 3D points defined in a structure with x, y and 
z components, write a function to compute a distance matrix with 
the distances between each pair of points. 

2. Given a 2D array, M,  of floats of dimensions n by 4, and a vector, 
v,  of 4 floats compute Mv. 



188CHAPTER 16. HIGH PERFORMANCE ASSEMBLY PROGRAMMING 



Chapter 1 7  

Counting bits in an array 

In this chapter we explore several solutions to the problem of counting 
all the 1 bits in an array of quad-word integers. For each test we use the 
same C main program and implement a different function counting the 
number of 1 bits in the array. All these functions implement the same 
prototype: 

long popcnt_array ( long *a, int size ) ;  

17. 1 C function 

The first solution is a straightforward C solution: 

long popcnt_array ( long *a, int size ) 
{ 

int w ,  b ;  
long word ; 
long n ;  

n = 0 ;  
for ( w = 0 ;  w < size ; w++ ) { 

word = a [w] ; 
n += word & 1 ;  
for ( b = 1 ;  b < 64 ; b++ ) { 

n += (word >> b) & 1 ;  

189 



190 

} 

} 
} 
return n ;  

CHAPTER 1 7. COUNTING BITS IN AN ARRAY 

The testing consists of calling popcnt_array 1000 times with an array 
of 100000 longs (800000 bytes) . Compiling with optimization level zero 
(option -DO) the test took 14.63 seconds. With optimization level 1 ,  it 
took 5.29 seconds, with level 2 it took 5.29 seconds again, and with level 
3 it took 5.37 seconds. Finally adding -funroll-all-loops, it took 4.74 
seconds. 

The algorithm can be improved by noticing that frequently the upper 
bits of the quad-words being tested might be 0. We can change the inner 
for loop into a while loop: 

long popcnt_array ( unsigned long *a,  int size ) 
{ 

} 

int w, b ;  
unsigned long word ; 

i 
long n ;  

n ;:;;; 0 ;  
for ( w ;:;;; 0 ;  w < s ize ; w++ ) { 

word ;:;;; a [w] ; 

} 

while ( word ! ;:;;; 0 ) { 
·n +;:;;; word & 1 ; 
word >>= 1 ;  

} 

return n ;  

Using the maximum optimization options the version takes 3.34 sec
onds. This is an instance of using a better algorithm. 

17 .2  Counting 1 bits in assembly 

It is not too hard to unroll the loop for working on 64 bits into 64 steps 
of working on 1 bit. In the assembly code which follows one fourth of the 



17.2. CO UNTING 1 BITS IN ASSEMBLY 191 

bits of each word are placed in rax, one fourth in rbx, one fourth in rex 
and one fourth in rdx. Then each fourth of the bits are accumulated using 
different registers. This allows considerable freedom for the computer to 
use out-or-order execution with the loop . 

segment . text 
global popcnt_array 

popcnt_array : 
push rbx 
push rbp 
push r12 
push r13 
push r14 
push r15 
xor eax , eax 
xor ebx , ebx 
xor ecx , ecx 
xor edx , edx 
xor r12d , r12d 
xor r13d ,  r 13d 
xor r14d , r 14d 
xor r15d , r 15d 

. count words : 
mov r8 , [rdi] 
mov r9 , r8 
mov r10 , r8 
mov r1 1 , r9 
and r8 , Oxffff 
shr r9 , 16  
and r9 , Oxffff 
shr r10 , 32 
and r10 , Oxffff 
shr r1 1 , 48 
and r 1 1 , Oxffff 

mov r12w ,  r8w 
and r12w ,  1 



192 CHAPTER 1 7. COUNTING BITS IN AN ARRAY 

add rax , r12  
mov r13w ,  r9w 
and r13w ,  1 
add rbx , r13 
mov r14w,  r10w 
and r14w ,  1 
add rex , r14 
mov r15w ,  r11w 
and r15w ,  1 
add rdx , r15 

%rep 15 
shr r8w , 1 
mov r12w,  r8w 
and r12w ,  1 
add rax , r12 
shr r9w , 1 
mov r13w ,  r9w 
and r13w ,  1 
add rbx , r13 
shr r10w ,  1 
mov r14w ,  r10w 
and r14w ,  1 
add rex , r14 
shr r1 1w ,  1 
mov r15w ,  r11w 
and r15w ,  1 
add rdx , r15 

%endrep 
add rdi , 8 
dec rsi 
j g  . count_words 
add rax , rbx 
add rax , rex 
add rax , rdx 
pop r15 
pop r14 



1 7.3. PRECOMPUTING THE NUMBER OF BITS IN EACH BYTE193 

pop r13 
pop r12 
pop rbp 
pop rbx 
ret 

This is an unfortunate side effect - the use of a repeat section with 
repeats 1 5  times. This makes for function of 1 123 bytes. Perhaps it was 
worth it to execute the test in 2.52 seconds. The object file is only 240 
more bytes than the C code with unrolled loops. 

17.3  Precomputing the number of bits in each 
byte 

The · next algorithmic improvement comes from recognizing that we can 
precompute the number of bits in each possible bit pattern and use an 
array of 256 bytes to store the number of bits in each byte. The� counting . 
the number of bits in a quad-word consists of using the 8 bytes of the 
quad-word as indices into the array of bit counts and adding them up. 

Here is the C function for adding the number of bits in the array 
without the initialization of the count array: 

long popcnt_array ( long *a ,  int size ) 
{ 

} 

int b ;  
long n ;  
int word ; 

n = 0 ;  
for ( b = 0 ;  b < size*8 ; b++ ) { 

word = ( (unsigned char * ) a) [b] ; 
n += count [word] ; 

} 
return n ;  

This code took 0.24 seconds for the test, so we have a new winner. I 



194 CHAPTER 1 7. COUNTING BITS IN AN ARRAY 

tried hard to beat this algorithm using assembly language, but managed 
only a tie. 

1 7.4 Using the popcnt instruction 

A new instruction included in the Core i series processors is popent which 
gives the number of 1 bits in a 64 bit register. So on the right computers, 
we can employ the technique of using a specialized instruction: 

segment . text 
global popent_array 

popent_array : 
xor eax , eax 
xor r8d , r8d 
xor eex , eex 

. eount_more : 
popent 
add 
popent 
add 
add 
emp 
j l  
add 
ret 

rdx , [rdi+rex*8] 
rax , rdx 
r9 , [rdi+rex*8+8] 
r8 , r9 
rex , 2 
rex , rsi 
. eount_more 
rax , r8 

We have a new winner on the Core i7 at 0 .04 seconds which is 6 times 
faster than the nearest competitor. 



1 7.4. USING THE POPCNT INSTRUCTION 

Exercises 

195 

1. Write a function to convert an array of ASCII characters to EBCDIC 
and another to convert back to ASCII. 

2. For 2 arrays of ASCII characters write a function to find the longest 
common substring. 



196 CHAPTER 1 7. COUNTING BITS IN AN ARRAY 



Chapter 1 8  

Sobel filter 

The Sobel filter is an edge detection filter used in image processing. The 
operation of the filter is to process 3x3 windows of data by convolving each 
pixel by one 3x3 matrix to produce an edge measure in the x direction 
and another in the x direction. Here are the 2 matrices 

Bx = [=� � �] 
- 1  0 1 

For an individual pixel Ir,c the x edge measure, Gx , is computed by 

1 1 
Gx = L L (Sx,i,j * Ir+i,c+i ) 

i=-1 j=-1 

where we have conveniently numbered the rows and columns of Bx starting 
with -1 .  Similarly we compute Gy using 

1 1 
Gy = L L (Sy,i,j * Ir+i,c+i) 

i=-l j=-1 

Next we show how to get the magnitude of the edge measure, G, 

G =  Jc2 + G2 X y 

197 



198 CHAPTER 18. SOBEL FILTER 

18 .1  Sobel in C 

Here is a C function which computes the Sobel edge magnitude for an 
image of arbitrary size: 

#include <math . h> 

#def ine matrix (a ,b , c) a [ (b) * (cols ) + ( c ) ]  

void sobel ( unsigned char *data,  float *output , long rows , 
long eels ) 

{ 

} 

int r ,  c ;  
int gx , gy ; 

for ( r = 1 ;  r < rows- 1 ;  r++ ) { 
for ( c = 1 ;  c < cols- 1 ; c++ ) { 

} 
} 

gx = -matrix (data ,r- 1 , c- 1 )  + matrix (data ,r-1 , c+1 )  + 
-2*matrix (data , r , c- 1 )  + 2*matrix (data , r , c+1 )  + 
-matrix (data ,r+i , c- 1 )  + matrix (data , r+1 , c+1 ) ; 

gy = -matrix (data , r-i , c- 1 )  - 2*matrix (data ,r-1 , c) 
- matrix (data ,r- 1 , c+1 )  + 
matrix (data , r+1 , c- 1 )  + 2*matrix (data, r+1 , c ) 
+ matrix (data , r+1 , c+1 ) ; 

matrix (output , r , c ) = sqrt ( (float ) (gx) * (float ) (gx) + 
(f loat ) (gy) * (float ) (gy) ) ; 

This code was compiled with -03 optimization and full loop unrolling. 
Testing with 1024 x 1024 images showed that it computed 161 .5  Sobel 
magnitude images per second. Testing with 1000 different images to 
cut down on the effect of cached images, this code produced 158 images 
per second. Clearly the code is dominated by mathematics rather than 
memory bandwidth. 



18.2. SOBEL COMPUTED USING SSE INSTRUCTIONS 199 

18 .2 Sobel computed using SSE instructions 

Sobel was chosen as a good example of an algorithm which manipulates 
data of many types. First the image data is byte data. The movdqu 
instruction was used to transfer 16 adjacent pixels from one row of the 
image. These pixels were processed to produce the contribution of their 
central 14 pixels to Gx and Gy . Then 16 pixels were transferred from the 
image one row down from the first 16 pixels. These pixels were processed 
in the same way adding more to Gx and Gy . Finally 16 more pixels 2 
rows down from the first 16 were transferred and their contributions to 
Gx and Gy were computed. Then these contributions were combined, 
squared, added together, converted to 32 bit floating point and square 
roots were computed for the 14 output pixels which were placed in the 
output array. 

Tested on the same Core i7 computer, this code produced 1063 Sobel 
magnitude images per second. Testing with 1000 different images this 
code produced 980 images per second, which is about 6.2 times as fast as 
the C version. 

Here are the new instructions used in this code: 

pxor This instruction performs an exclusive or on a 128 XMM source 
register or memory and stores the result in the destination register. 

movdqa This instruction moves 128 bits of aligned data from memory 
to a register, from a register to memory, or from a register to a 
register. 

movdqu This instruction moves 128 bits of unaligned data from memory 
to a register, from a register to memory, or from a register to a 
register. 

psrldq This instruction shifts the destination XMM register right the 
number of bytes specified in the second immediate operand. 

punpcklbw This instruction unpacks the low 8 bytes of 2 XMM registers 
and intermingles them. I used this with the second register holding 
all 0 bytes to form 8 words in the destination. 

punpckhbw This instruction unpacks the upper 8 bytes of 2 XMM reg
isters and intermingles them. 



200 CHAPTER 18. SOBEL FILTER 

paddw This instruction adds 8 16 bit integers from the second operand 
to the first operand. At least one of the operands must be an XMM 
register and one can be a memory field. 

psubw This instruction subtracts the second set of 8 16 bit integers from 
the first set. 

pmullw This instruction multiplies the first set of 8 16 bit integers times 
the second set and stores the low order 16  bits of the products in 
the first operand. 

punpcklwd This instruction unpacks and interleaves words from the 
lower halves of 2 XMM registers into the destination register. 

punpckhwd This instruction unpacks and interleaves words from the 
upper halves 2 of XMM registers into the destination register. 

cvtdq2ps This instruction converts 4 double word integers into 4 double 
word floating point values. 

Here is the assembly code: 

%macro multipush 1-* 
%rep %0 

push %1 
%rotate 1 

%endrep 
%endmacro 

%macro multipop 1-* 
%rep %0 

%rotate - 1  
pop %1 

%endrep 
%endmacro 

I needed to push and pop all callee 
save registers , so I used macros 
from the yasm documentation . 

sobel ( input , output , rows , cols ) ;  
char input [rows] [cols] 
float output [rows] [cols] 



18.2. SOBEL COMPUTED USING SSE INSTRUCTIONS 201 

boundary of the output array will be unfilled 

sobe l :  
. eols 
. rows 

segment . text 
global sobel , main 

equ 
equ 

0 
8 

. output equ 16  

. input equ 24 

. bpir equ 32 

. bpor equ 40 
multipush rbx , rbp , r12 , r13 , r14 ,  r15 
sub rsp , 48 
emp rdx , 3 
j l  . noworktodo 
emp rex , 3 
j l  . noworktodo 
mov [rsp+ . input] , rdi 
mov [rsp+ . output] , rsi 
mov [rsp+ . rows] , rdx 
mov [rsp+ . cols] , rex 
mov [rsp+ . bpir] , rex 
imul rex , 4 
mov [rsp+ . bpor] , rex 

mov rax , [rsp+ . rows] ; 
mov rdx , [rsp+ . cols] 
sub rax , 2 
mov r8 , [rsp+ . input] 
add r8 , rdx 
mov r9 , r8 
mov r10 ,  r8 
sub r8 , rdx 
add r10 , rdx 
pxor xmm13 , xmm13 
pxor xmm14 , xmm14 
pxor xmm15 , xmm15 

count of rows to process 

address of row 

address of row-1 
address of row+1 



202 CHAPTER 18. SOBEL FILTER 

. more_rows : 
mov rbx , 1 

. more_cols : 
movdqu xmmO , [r8+rbx-1] 
movdqu xmm1 , xmmO 
movdqu xmm2 , xmmO 
pxor xmm9 , xmm9 
pxor xmm10 , xmm10 
pxor xmm11 ,  xmm1 1 
pxor xmm12 ,  xmm12  
psrldq xmm1 , 1 
psrldq xmm2 , 2 

movdqa xmm3 , xmm 
movdqa xmm4 , xmm1 
movdqa xmm5 , xmm2 

f irst column to process 

data for 1st row of 3 

shift the pixels 1 to the right 
shift the pixels 2 to the right 
Now the lowest 14 values of 
xmmO , xmm1 and xmm2 are lined 
up properly for applying the 
top row of the 2 matrices . 

punpcklbw xmm3 , xmm13 ; The low 8 values are now words 
punpcklbw xmm4 , xmm14 ; in registers xmm3 , xmm4 , and 
punpcklbw xmm5 , xmm15 ;  and xmm5 - ready for arithmetic . 
psubw xmm1 1 ,  xmm3 xmm1 1 will hold 8 values of Gx 
psubw xmm9 , xmm3 xmm9 will hold 8 values of Gy 
paddw xmm1 1 ,  xmm5 Gx subtracts left , adds right 
psubw xmm9 , xmm4 Gy subtracts 2 * middle pixel 
psubw xmm9 , xmm4 
psubw xmm9 , xmm5 
punpckhbw xmmO , xmm13 
punpckhbw xmm1 , xmm14 
punpckhbw xmm2 , xmm15 
psubw xmm12 ,  xmmO 
psubw xmm10 , xmmO 
paddw xmm12 , xmm2 
psubw 
psubw 
psubw 

xmm10 ,  xmm1 
xmm10 , xmm1 
xmm10 ,  xmm2 

Final subtraction for Gy 
Convert top 8 bytes to words 

Perform the same arithmetic 
storing these 6 values in 
xmm12 and xmm10 



18.2. SOBEL COMPUTED USING SSE INSTRUCTIONS 203 

movdqu 
movdqu 
psrldq 
movdqa 

xmmO , [r9+rbx-1] ; data for 2nd row of 3 
xmm2 , xmmO 
xmm2 , 2 
xmm3 , xmmO 

movdqa xmm5 , xmm2 
punpcklbw xmm3 , x�13 
punpcklbw xmm5 , xmm15 
psubw xmm1 1 ,  xmm3 
psubw xmm1 1 ,  xmm3 
paddw xmm1 1 ,  xmm5 
paddw xmm1 1 ,  xmm5 
punpckhbw xmmO , xmm13 
punpckhbw xmm2 , xmm15 
psubw xmm12 , xmmO 
psubw 
paddw 
paddw 

xmm12 , xmmO 
xmm12 , xmm2 
xmm12 , xmm2 

; repeat math from 1st row 
; with nothing added to Gy 

8 values for 1st row 

movdqu 
movdqu 
movdqu 
psrldq 
psrldq 

xmmO , [r10+rbx- 1] ; data for 3rd row of 3 
xmm1 , xmmO 
xmm2 , xmmO 
xmml , 1 
xmm2 , 2 

movdqa xmm3 , xmmO 
movdqa xmm4 , xmm1 
movdqa xmm5 , xmm2 
punpcklbw xmm3 , xmm13 
punpcklbw xmm4, xmm14 
punpcklbw xmm5 , xmm15 
psubw xmm1 1 ,  xmm3 
paddw xmm9 , xmm3 
paddw xmm1 1 ,  xmm5 
paddw xmm9 , xmm4 
paddw xmm9 , xmm4 
paddw xmm9 , xmm5 
punpckhbw xmmO , xmm13 

8 values for 3rd row 



204 CHAPTER 18. SOBEL FILTER 

punpckhbw xmm1 , xmm14 
punpckhbw xmm2 , xmm15 
psubw xmm12 , xmmO 
paddw xmm10 , xmmO 
paddw xmm12 ,  xmm2 
paddw xmm10 , xmm1 
paddw xmm10 , xmm1 
paddw xmm10 , xmm2 

pmullw xmm9 , xmm9 square Gx and Gy values 
pmullw xmm10 ,  xmm10 
pmullw xmm1 1 ,  xmm11  
pmullw xmm12 , xmm12 
paddw xmm9 , xmm 1 1  
paddw xmm10 , xmm12 
movdqa xmm1 , xmm9 
movdqa xmm3 , xmm10 

sum of squares 

punpcklwd xmm9 , xmm13 Convert low 4 words to dwords 
punpckhwd xmm1 , xmm13 Convert high 4 words to dwords 
punpcklwd xmm10 , xmm13 Convert low 4 words to dwords 
punpckhwd xmm3 , xmm13 Convert high 4 words to dwords 
cvtdq2ps xmmO , xmm9 Convert to f loating point 
cvtdq2ps xmm1 , xmm1 Convert to floating point 
cvtdq2ps xmm2 , xmm10 Convert to floating point 
cvtdq2ps xmm3 , xmm3 Convert to floating point 
sqrtps xmmO , xmmO Take sqrt to get magnitude 
sqrtps xrnm1 , xmm1 Take sqrt to get magnitude 
sqrtps xmm2 , xmm2 Take sqrt to get magnitude 
sqrtps xrnm3 , xmm3 Take sqrt to get magnitude 
movups [rsi+rbx*4] , xmmO 
movups [rsi+rbx*4+16] , xmm1 
movups 
movlps 

[rsi+rbx*4+32] , xmm2 
[rsi+rbx*4+48] , xmm3 

add rbx , 14 
cmp rbx , rdx 
j l  . more_cols 

process 14 Sobel values 



18.2. SOBEL COMPUTED USING SSE INSTRUCTIONS 205 

add r8 , rdx 
add r9 , rdx 
add r10 , rdx 
add rsi ,  [rsp+ . bpor] 
sub rax , 1 1 fewer row to process 
cmp rax , 0 
j g  . more_rows 

. noworktodo : 
add rsp , 48 
multipop rbx , rbp , r12 , r13 , r14,  r15 
ret 



206 CHAPTER 18. SOBEL FILTER 

Exercises 

1 .  Convert the Sobel function into a function to perform an arbitrary 
convolution of an image with a 3 x 3 matrix. 

2. Write an assembly function to convert an image into a run-length 
encoded image. 

3. Write a function to fill an array with pseudo-random numbers de
rived by using 4 �parate interleaved sequences based on the formula 

Xn+l = (aXn + c) mod m 
Use m = 32 for all 4 sequences. Use 1664525, 22695477, 1 103515245 
and 214013 for the values for a and 1013904223, 1 ,  12345 and 
2531011  for the values for c. 



Chapter 1 9  

Computing Correlation 

The final example of optimization is computing the correlation between 
two variables x and y given n sample values. One way to compute corre
lation is using 

But this formula requires two passes through the data - one pass to com
pute averages and a second pass to complete the formula. There is a less 
intuitive formula which is more amenable to computation: 

The computational formula requires computing 5 sums when you scan 
the data: the sum of Xi , the sum of Yi , the sum of xt, the sum of Yt and 
the sum of XiYi · After computing these 5 sums there is a small amount 
of time required for implementing the computational formula. 

19 . 1 C implementation 

The C computation is performed in the corr function given below: 

#include <math . h> 
double corr ( double x [] , double y [] ,  long n )  

207 



208 

{ 

} 

CHAPTER 19. COMP UTING CORRELATION 

double sum_x , sum_y , sum_xx , sum_yy , sum_xy ; 
long i ;  

sum_x = sum_y = sum_xx = sum_yy = sum_xy = 0 . 0 ;  
for ( i 0 ;  i < n ;  i++ ) { 

} 

sum_x += x [i] ; 
sum_y += y [i] ; 
sum_xx += x [i] *x [i] ; 
sum_yy += y [i] *y [i] ; 
sum_xy += x [i] *Y [i] ; 

return (n*sum_xy-sum_x*sum_y) / 
sqrt ( (n*sum_xx-sum_x*sum_x) * (n*sum_yy-sum_y*sum_y) ) ; 

The gee compiler generated assembly code which used all 16 of the 
XMM registers as it unrolled the loop to process 4 iterations of the for 
loop in the main loop. The compiler also correctly handled the extra 
data values when the array size was not a multiple of four. Performing 
1 million calls to compute correlation on 2 arrays of size 10000 required 
13 .44 seconds for the C version. This is roughly 5.9 GFLOPs which is 
quite impressive for compiled code. 

19 .2  Implementation using SSE instructions 

A version of the core function was written using SSE instructions which 
will execute on many modern computers. Here is the SSE version: 

segment . text 
global corr 

rdi , rsi , rdx , rex , r8 , r9 

rdi : x array 
rdi : y array 
rex : loop counter 



1 9. 2. IMPLEMENTATION USING SSE INSTRUCTIONS 209 

rdx : n 
xmmO : 2 parts of sum_x 
xmm1 : 2 parts of sum_y 
xmm2 : 2 parts of sum_xx 
xmm3 : 2 parts of sum_yy 
xmm4 : 2 parts of sum_xy 
xmm5 : 2 x values - later squared 
xmm6 : 2 y values - later squared 
xmm7 : 2 xy values 

corr : 
xor r8 , r8 
mov rex , rdx 
subpd xmmO , xmmO 
movapd xmm1 , xmmO 
movapd xmm2 , xmmO 
movapd xmm3 , xmmO 
movapd xmm4 , xmmO 
movapd xmm8 , xmmO 
movapd xmm9 , xmmO 
movapd xmm10 , xmmO 
movapd xmm1 1 ,  xmmO 
movapd xmm12 , xmmO 

. more : 
movapd xmm5 , [rdi +r8] mov x 
movapd xmm6 , [rsi +r8] mov y 
movapd xmm7 , xmm5 mov x 
mulpd xmm7 , xmm6 xy 
addpd xmmO , xmm5 sum_x 
addpd xmm1 , xmm6 sum_y 
mulpd xmm5 , xmm5 XX 

mulpd xmm6 , xmm6 yy 
addpd xmm2 , xmm5 sum_ XX 

addpd xmm3 , xmm6 sum_yy 
addpd xmm4 , xmm7 sum_xy 
movapd xmm13 , [rdi +r8+16] mov x 
movapd xmm14 , [rsi +r8+16] mov y 
movapd xmm15 , xmm13  ; mov x 



210 CHAPTER 19. COMPUTING CORRELATION 

mulpd xmm15 , xmm14 xy 
addpd xmm8 , xmm13 sum_x 
addpd xmm9 , xmm14 sum_y 
mulpd xmm13 , xmm13 XX 

· mulpd xmm14 , xmm14 yy 
addpd xmm10 , xmm13 sum_xx 
addpd xmm1 1 ,  xmm14 sum_yy 
addpd xmm12 , xmm15 sum_xy 
add r8 , 32 
sub rex , 4 
j nz . more 
addpd xmmO , xmm8 
addpd xmm1 , xmm9 
addpd xmm2 , xmm10 
addpd xmm3 , xmm11  
addpd xmm4 , xmmi2 
haddpd xmmO , xmmO sum_x 
haddpd xmm1 , xmm1 sum_y 
haddpd xmm.2 , xmm2 sum_xx 
haddpd xmm3 , xmm3 sum_yy 
haddpd xmm4 , xmm4 sum_xy 
movsd xmm6 , xmmO sum_x 
movsd xmm7 , xmm1 sum_y 
cvtsi2sd xmm8 , rdx n 
mulsd xmm6 , xmm6 sum_x*sum_x 
mulsd xmm7 , xmm7 sum_y* sum_y 
mulsd xmm2 , xmm8 n*sum_xx 
mulsd xmm3 , xmm8 n*sum_yy 
subsd xmm2 , xmm6 n*sum_xx-sum_x*sum_x 
subsd xmm3 , xmm7 n*sum_yy-sum_y*sum_y 

mulsd xmm2 , xmm3 denom*denom 
sqrtsd xmm2 , xmm2 den om 
mulsd xmm4 , xmm8 n*sum_xy 
mulsd xmmO , xmm1 sum_x*sum_y 
subsd xmm4 , xmmO n*sum_xy-sum_x*sum_y 
divsd xmm4 , xmm2 correlation 
movsd xmmO , xmm4 need in xmmO 



19.3. IMPLEMENTATION USING AVX INSTRUCTIONS 2 1 1  

ret 

In the main loop of this function the movapd instruction was used 
to load 2 double precision values from the x array and again the load 2 
values from the y array. Then accumulation was performed in registers 
xmmO - xmm4. Each of these accumulation registers held 2 accumulated 
values - one for even indices and one for odd indices. 

After this collection of accumulations the movapd instruction was used 
again to load 2 more values for x and again to load 2 more values from 
y. These values were used to form accumulations into 5 more registers: 
xmm8 - xmm12.  

After completing the loop, it was time to add together the 4 parts of 
each required summation. The first step of this process was using addpd 
to add the registers xmm8 - xmm12 to registers xmmO - xmm4. Following this 
the "horizontal add packed double" , haddpd, instruction was used to add 
the upper and lower halves of each of the summation registers to get the 
final sums. Then the code implemented the formula presented earlier. 

When tested on 1 million correlations of size 10000, this program used 
6.74 seconds which is approximately 1 1 .8 GFLOPs. Now this is pretty 
impressive since the CPU operates at 3.4 GHz. It produced about 3.5 
floating point results per cycle. This means that more than one of the 
SSE instructions was completing at once. The CPU is performing out
of-order execution and completing more than one SSE instruction per 
cycle. 

19.3 Implementation using AVX instructions 

The Core i7 CPU implements a new collection of instructions called "Ad
vanced Vector Extensions" or AVX. For these instructions an extension 
of the XMM registers named ymmO through ymm15  is provided along with 
some new instructions. The YMM registers are 256 bits each and can 
hold 4 double precision values in each one. This allowed a fairly easy 
adaptation of the SSE function to operate on 4 values at once. 

In addition to providing the larger registers, the AVX instructions 
added versions of existing instructions which allowed using 3 operands: 2 
source operands and a destination which did not participate as a source 



212 CHAPTER 19. COMPUTING CORRELATION 

(unless you named the same register twice) . The AVX versions of in
structions are prefixed with the letter "v" . Having 3 operand instructions 
reduces the register pressure and allows using two registers as sources in 
an instruction while preserving their values. 

Here is the AVX version of the corr function: 

segment . text 
global corr 

rdi , rsi ,  rdx , rex , r8 , r9 

rdi : x array 
rdi : y array 
rex : loop counter 
rdx : n 
ymmO : 4 parts of sum_x 
ymm1 : 4 parts of sum_y 
ymm2 : 4 parts of  sum_xx 
ymm3 : 4 parts of sum_yy 
ymm4 : 4 parts of sum_xy 
ymm5 : 4 x values - later squared 
ymm6 : 4 y values - later squared 
ymm7 : 4 xy values 

corr : 
xor r8 , r8 
mov rex , rdx 
vzeroall 

. more : 
vmovupd ymm5 , [rdi+r8] mov x 
vmovupd ymm6 , [rsi+r8] mov y 
vmulpd ymm7 , ymm5 , ymm6 xy 
vaddpd ymmO , ymmO , ymm5 sum_x 
vaddpd ymm1 , ymm1 , ymm6 sum_y 
vmulpd ymm5 , ymm5 , ymm5 XX 

vmulpd ymm6 , ymm6 , ymm6 yy 
vaddpd ymm2 , ymm2 , ymm5 sum_xx 
vaddpd ymm3 , ymm3 , ymm6 sum_yy 
vaddpd ymm4 , ymm4 , ymm7 sum_xy 



19.3. I.lVIPLEMENTATION USING AVX INSTRUCTIONS 213 

vmovupd 
vmovupd 
vmulpd 
vaddpd 
vaddpd 
vmulpd 
vmulpd 
vaddpd 
vaddpd 
vaddpd 
add 

ymm13 , [rdi+r8+32] 
ymm14 , [rsi+r8+32] 
ymm15 , ymm13 , ymm14 
ymm8 , ymm8, ymm13 
ymm9 , ymm9 , ymm14 
ymm13 , ymm13 , ymm13 
ymm14 , ymm14 , ymm14 
ymm10 , ymm10 , ymm13 
ymm1 1 ,  ymm11 , ymm14 
ymm12 , ymm12 , ymm15 

r8 , 64 
sub rex , 8 
j nz . more 
vaddpd ymmO , ymmO , ymm8 
vaddpd ymm1 , ymm1 , ymm9 
vaddpd ymm2 , ymm2 , ymm10 
vaddpd ymm3 , ymm3 , ymm11  
vaddpd ymm4 , ymm4 , ymm12 
vhaddpd ymmO , ymmO , ymmO 
vhaddpd ymm1 , ymm1 , ymm1 
vhaddpd ymm2 , ymm2 , ymm2 
vhaddpd ymm3 , ymm3 , ymm3 
vhaddpd ymm4 , ymm4 , ymm4 
vextractf128 xmm5 , ymmO , 1 
vaddsd xmmO , xmmO , xmm5 
vextractf128 xmm6 , ymm1 , 1 
vaddsd xmm1 , xmm1 , xmm6 
vmulsd xmm6 , xmmO , xmmO 
vmulsd xmm7 , xmm1 , xmm1 
vextractf 128 xmm8 , ymm2 , 1 
vaddsd xmm2 , xmm2 , xmm8 
vextractf128 xmm9 , ymm3 , 1 
vaddsd xmm3 , xmm3 , xmm9 
cvtsi2sd xmm8 , rdx 
vmulsd xmm2 , xmm2 , xmm8 
vmulsd xmm3 , xmm3 , xmm8 
vsubsd xmm2 , xmm2 , xmm6 

mov x 
mov y 
xy 
sum_x 
sum_y 
XX 

yy 
sum_xx 
sum_yy 
sum_xy 

sum_x 
sum_y 
sum_xx 
sum_yy 
sum_xy 

sum_x*sum_x 
sum_y*sum_y 

n 
n*sum_xx 
n*sum_yy 
n*sum_xx-sum_x*sum_x 



214 CHAPTER 1 9. COMPUTING CORRELATION 

vsubsd xmm3 , xmm3 , xmm7 n*sum_yy-sum_y*sum_y 
vmulsd xmm2 , xmm2 , xmm3 denom*denom 
vsqrtsd xmm2 , xmm2 , xmm2 denom 
vextractf 128 xmm6 , ymm4 , 1 
vaddsd xmm4 , xmm4 , xmm6 
vmulsd xmm4 , xmm4 , xmm8 n*sum_xy 
vmulsd xmmO , xmmO , xmm1 sum_x*sum_y 
vsubsd xmm4 , xmm4 , xmmO n*sum_xy-sum_x*sum_y 
vdivsd xmmO , xmm4 , xmm2 correlation 
ret 

Now the code is accumulating 8 partial sums for each required sum. 
The vhaddpd instruction unfortunately did not sum all 4 values in a 
register. Instead it summed the first 2 values and left that sum in the 
lower half of the register and summed the last 2 values and left that sum 
in the upper half of the register. It was necessary to use "extract 128 bit 
field" , vextractf 128, instruction to move the top half of these sums into 
the lower half of a register to prepare for adding the 2 halves. 

When tested with one million calls to compute correlation on 10000 
pairs of values, the AVX version used 3.9 seconds which amounts to 20.5 
GFLOPs. This is achieving an average of 6 floating point results in each 
clock cycle. The code had many instructions which did 4 operations and 
the CPU did an excellent job of out-of-order execution. The use of 2 
sets of accumulation registers most likely reduced the inter-instruction 
dependency which helped the CPU perform more instructions in parallel. 



19.3. IMPLEMENTATION USING AVX INSTRUCTIONS 215 

Exercises 

1 .  Write an SSE function to compute the mean and standard deviation 
of an array of doubles. 

2. Write a function to perform a least squares fit for a polynomial 
function relating two sequences of doubles in 2 arrays. 



216 CHAPTER 19. COMPUTING CORRELATION 



Appendix A 

Using gdb 

The gdb debugger is a product of the Free Software Foundation whose web 
site is http : I /www . gnu . org. It supports a variety of languages including 
C, C++, Fortran, and assembly. The debugger seems best suited for C 
and C++ , and debugging code from yasm is less than ideal. 

gdb keeps track of source code lines quite well for yasm programs. Its 
primary shortcoming (at this point) is that yasm doesn't provide type 
information for variables. It does provide the address of variables which 
allows the user to do type casts to examine variables adequately though 
this requires more effort than if the assembler provided complete type 
information. 

One saving feature of gdb is its macro facility. It is possible to cre
ate macros which transparently perform type casts and make debugging 
easier. The author has written bash/awk scripts which automate this 
process. 

More extensive documentation can be found at 
http : //sourceware . org/gdb/current/onlinedocs/gdb. 

A.l  Preparing for gdb 

In order for gdb to be cognizant of source code and variables, your code 
must be compiled with special options which add debugging symbol in
formation to the object code. With gee or g++ the -g option is used to 
enable debugging support. With yasm you also use -g but you must spec-

217 



218 APPENDIX A. USING GDB 

ify a debugging format which can be either dwarf2 or stabs for Linux or 
cv8 for Microsoft Visual Studio. The dwarf2 option provides the most 
complete compatibility. 

The author has developed a script called yld to be used for linking 
when using _start for the start of the program and also ygcc for linking 
when using main. These scripts examine each object file on the link 
line and, for those with matching .asm files, they examine the .asm file 
to locate data definition statements. For each variable defined in the 
assembly code, the scripts produce a macro which is placed in a hidden 
file (name beginning with " ." ) which is used when debugging. The gdb 
initialization file is named based on the executable named by the -o option 
of the link command. For example, if the executable is named "array" , 
the init file is named " . array . gdb" . Here is an example of an init macro 
file: 

break main 
macro def ine a ( (unsigned char * ) &a) 
macro define b ( (int * ) &b) 
macro def ine c ( (long * )&c)  
macro def ine s ( (unsigned char * )&s) 
macro define next ( (short * )&next) 
macro define val ( (unsigned char * ) &val) 
macro define f ( (float * ) &f) 
macro define d ( (double * ) &d) 

The first line of the init file sets a break on main so that you are 
ready to start debugging immediately upon entering the debugger. The 
remaining lines create macros with the same name as variables from the 
assembly code. Each of these macros uses a type cast to convert the 
address of the variable to a pointer of the proper type. This allows using 
the variable name to get the pointer. For example next is a pointer to 
a short. This allows using *next to get the value next points to. You 
can also use next [0] , next [1] , next [2] , . . . to access array elements. 
Without using the init file, gdb will think that all the variables are double 
word integers. 



A.2. STARTING 219 

A.2 Starting 

The typical way to start gdb is 

gdb program 

where program is the name supplied in the -o option when the program 
was linked. The author has prepared a script named ygdb which is invoked 
similarly 

ygdb program 

This script runs gdb using the -x . program . gdb option to have gdb read 
and execute the commands in the init file. 

A.3 Quitting 

The command to quit is quit which can be abbreviated as q. If you have 
started running your program and the program is still running, gdb will 
inform you that the program is still running and ask if you wish to kill 
the process. Enter "y" to kill the process and exit. 

A.4 Setting break points 

You can set a breakpoint using the "breakpoint" command which can 
be abbreviated as "b" . You can either set the breakpoint using a label 
from the source code or using a line number of the file. 

b main 
b 17 

A.5 Running 

You start the execution of a program in gdb using "run" which can be 
abbreviated as "r" . If you are in the middle of running your program, gdb 
will prompt you for confirmation before killing the process and starting 
over. 



220 APPENDIX A. USING GDB 

If you have set a break point , the debugger will execute statements up 
to the break point and then return control to the debugger. At this point 
you can examine registers, examine memory, step through lines of code, 
or do any gdb command. If you have not set a break point, the program 
will run to completion or until it experiences a fault . This can sometimes 
be a convenient way to learn about problems like segmentation faults. 

While debugging you have several options for continuing execution. 
The first option is to continue execution until completion or another break 
point is reached. This is done using the "continue" command which can 
be abbreviated as "c" . .  

Another possibility is to "single step" through your program. Here 
there are 4 options. First you can either execute one source code state
ment or one machine instruction. In C/C++ you probably would pre
fer not to step one machine instruction at a time. You can also debug 
only within the same function or step into other functions when they 
are called. Single stepping in the same function is done using "next" or 
"next instruction" . With assembly code the two instructions do the 
same thing. These can be abbreviated as "n" or "ni" . If you use "next" 
the debugger will execute all calls to functions without returning to the 
debugger until returning from the functions. 

The alternative choice is to use the "step" or "stepinstruction" 
command. These commands execute either one source code statement 
or one machine instruction and allow debugging inside a called function. 
They can be abbreviated as "s" or "si" . The two commands have the 
same effect with assembly code. If you write your own functions, you 
would probably prefer using "step" to debug you called functions. How
ever, you might wish to use "next" to step "through" a call to a function 
like printf.  

A.6 Printing a trace of stack frames 

It 's fairly common to have programs die while executing. Below is a fairly 
typical occurrence. 

seyfarth@tux : -/teaching/asm$ . /testcopy 
Segmentation fault 



A.6. PRINTING A TRACE OF STACK FRAMES 221 

A segmentation fault is generally a error in coding where your program 
tries to access memory which it has not mapped into the program. This 
could be caused by going past the end of the array. Here is a sample from 
running gdb with this program. 

Reading symbols from /home/seyfarth/teaching/asm/testcopy . . .  
(gdb) run 
Starting program : /home/seyfarth/teaching/asm/testcopy 

Program received signal SIGSEGV , Segmentation fault . 
copy_repb ( )  at copy . asm : 12 
12  rep movsb 
(gdb) bt 
#0 copy_repb ( )  at copy . asm : 12  
#1  Ox000000000040097e in test (argc=<value optimized out> , 

argv=<value optimized out>) at testcopy . c : 27 
#2 main (argc=<value optimized out> , argv=<value opt imized 

at testcopy . c : 45 

Once again we get the segmentation fault, but immediately we see 
that the program died in the copy_repb function on line 12 of the file 
copy . asm. It was executing rep movsb. The "bt" command (backtrace) 
goes backwards through the stack frames for function calls. It reports that 
copy _repb was called by the test function which was called from main. 
The optimization level was high enough that there were variables which 
the backtrace command could not follow. I recompiled with -01 rather 
than -03 and got more interesting results: 

(gdb) run 
Starting program : /home/seyfarth/teaching/asm/testcopy 

Program received signal SIGSEGV , Segmentation fault . 
copy_repb ( )  at copy . asm : 12 
12 rep movsb 
(gdb) bt 
#0 copy_repb ( )  at copy . asm : 12 
#1  Ox00000000004006d8 in test (name=Ox400b7d "rep movsb" , 

copy=Ox400930 <copy _repb> , a=Ox7ffff7 ed2010 '"' 



222 APPENDIX A. USING GDB 

b=Ox7ffff7953010 11 11 count=100) at testcopy . c : 27 
#2 Ox00000000004008d5 in main (argc=<value optimized out> , 

argv=<value optimized out>) at testcopy . c : 45 

At this point it is possible to print the values of variables and list 
code from copy . asm. We can also use the "up" command to move up the 
stack frame to the previous function. 

(gdb) up 
#1  Ox00000000004006d8 in test (name=Ox400b7d 11 rep movsb 11 , 

copy=Ox400930 <copy_repb> , a=Ox7ffff7ed2010 1 1 1 1 , 

b=Ox7ffff7953010 11 11 , count=100) at testcopy . c : 27 
27 copy ( a , b , 10000000) ; 
(gdb) p a 
$ 1  = (unsigned char * )  Ox7ffff7ed2010 1 1 11 

At this point we are debugging the test function of test copy . c .  The 
third parameter to copy was 10000000 while the array sizes were 1000000. 
Frequently you can gain a lot of insight from the stack frame trace. 

A. 7 Examining registers 

You can use the "info registers" in gdb to print the integer registers. 
This can be abbreviated as "i r" : 

(gdb) i r 
rax OxO 0 
rbx Ox64 100 
rex Ox891690 8984208 
rdx Ox989680 10000000 
rsi Ox7ffff7a4b000 140737348153344 
rdi Ox7ffff7fca000 140737353916416 
rbp Ox7fffffffe6a0 Ox7fffffffe6a0 
rsp Ox7fffffffe690 Ox7fffffffe690 
r8 Ox64 100 
r9 OxO 0 
r10 Ox7fffffffe3f0 140737488348144 
r11  Ox206 518  



A.B. EXAMINING MEMORY 223 

r12 Ox7ffff7ed2010 140737352900624 
r13 Ox400930 4196656 
r14 Ox64 100 
r15 Ox3 3 
rip Ox40093f Ox40093f <eopy_repb+15> 
eflags Ox10206 [ PF IF RF ] 
es Ox33 51 
ss Ox2b 43 
ds OxO 0 
es OxO 0 
fs  OxO 0 
gs OxO 0 

This prints out all the general purpose registers, the flags register, the 
instruction pointer and size segment registers. This book has basically 
ignored segment registers since they aren't needed in 64 bit coding. 

You can print these plus the floating point registers using "info all" 
(or "i all" ) .  This would take up much space and has not been illus
trated. 

More commonly you might wish to examine one register. You can 
do this using "print $rex" to print register rex. You can abbreviate 
"print" as "p" . 

(gdb) p $rex 
$1 = · 8984208 

The default print format is decimal use "p/x $rex" to print in hex
adecimal: 

(gdb) p/x $rex 
$2 = Ox89 1690 

A.8 Examining memory 

The behavior of gdb without the use of the macros in the gdb init file 
created by yld or ygee is different for printing variables. By default gdb 
would print the value of a double word at a variable's location in memory 
given a command like "print x" . Using the type casting macros, gdb 
prints the variable's address instead. 



224 APPENDIX A. USING GDB 

So to print a single array element , you could use "print *x" , or 
"print x [0] " .  If x is an array, then array notation makes more sense. 
You can print any location from the array x. 

gdb also has an "examine" command (abbreviated "x" ) which can be 
used to examine multiple memory locations. You enter the command like 
"x/ 100 x" to print 100 locations of the x array. After the number you can 
append a format letter. Using x for the format letter means hexadecimal, 
c means character, b means binary and s means string. The examine 
command needs an expression evaluating to a memory location. This is 
what you get with a variable name with the gdb init file macros. Without 
these macros you would need to take the address of the variable as in a 
command like "x/ 1 OOx &x" . 



Appendix B 

Using scanf and printf 

The simplest method for input and output is using the C library's scan£ 
and print£ functions. These functions can handle virtually all forms 
of text input and output converting to/from integer and floating point 
format. 

It may be that modern programmers are familiar with C++ 1/0 and 
not with C. It would not be simple to call C++ 1/0 facilities, while it 
is simple to call C functions. So there is probably a need for a slight 
introduction to the 2 basic workhorses of C 1/0: scan£ and print£. 
These are sufficient for the 1/0 needs for learning assembly language. 
Practical uses of assembly language will likely be writing computational 
or bit manipulating functions with no requirement for 1/0 . Therefore this 
appendix will stick to the basics to facilitate writing complete programs 
while learning assembly programming. 

B.l  scanf 

The simplest way of explaining how to use scan£ is to show C calls, 
followed by assembly equivalents. scan£ is called with a format string 
as its first parameter. Depending on the format string there can be an 
arbitrary number of additional parameters. Within the format string are 
a series of conversion specifiers. Each specifier is a percent character 
followed by one of more letters defining the type of data to convert . Here 
are the basic format specifiers: 

225 



226 APPENDIX B. USING SCANF AND PRINTF 

format data type 
%d 4 byte integer 

%hd 2 byte integer 
%ld 8 byte integer 
%f 4 byte floating point 
%If 8 byte floating point 
%s character array ( C string) 

So if we wish to read a double followed by a character string we could use 
the format string "%lf %s " .  

Each additional parameter for scanf is an address of the data location 
to receive the data read and converted by scanf . Here is a sample C call: 

double x ;  
char s [100] ; 
n = scanf ( "%lf %s , &x , s ) ;  

scanf will return the number of items converted. In the call above it 
will return 2 if a number and a string are successfully entered. The string 
will be placed in the array s with a 0 at the end of the string. 

Here is how to do the same thing in assembly: 

segment . data 
X dq 0 . 0  
n dd 0 
s times 100 db 0 
fmt db "%lf %s"  , 0  · 

segment . text 
lea rdi , [fmt] 
lea rsi ,  [x] 
lea rdx , [s] 
xor eax , eax no floating point parameters 
call scanf 
mov [n] , eax 

There are a couple of pitfalls possible. First the format string needs a 
0 at the end and it can't be enclosed in the double quotes. Second there 
are no floating point parameters - &x is a address parameter and it is 
stored in rsi so rax must be set to 0 before the call. 



B.2. PRINTF 227 

B.2 printf 

printf allows printing in a wide variety of formats. Like scanf its 
first parameter is a format string. The format string contains charac
ters to print along with conversion specifiers like scanf . Data printed 
with printf is likely to be stored in a buffer until a new-line character 
is printed. In C, the new-line character can be represented as \n at the 
end of the format string. yasm does not support C escape characters in 
strings, so it is necessary to explicitly add new-line (OxOa) and 0 bytes. 

Here is a C print£ call 

char name [64] ; 
int value ; 
printf ( "The value of %s is %d\n" , name , value ) ;  

Here is the same print£ call in assembly 

segment . data 
value dd 0 
name times 64 db 0 
fmt db "The value of %s is %d" , Ox0a , O  

segment . text 
lea rdi , [fmt] 
lea rsi ,  [name] 
mov edx , [value] 
xor eax , eax 
call printf 

printf can have floating point parameters, so be careful to count 
them and set rax appropriately. 



228 APPENDIX B. USING SCANF AND PRINTF 



Appendix C 

Using macros in yasm 

yasm provides both single line macros and multi-line macros. Both of 
these can be used to provide abbreviations with meaningful names for 
commonly used instructions. While these might obscure the mechanisms 
of assembly language while learning the language they can be of significant 
utility in practical situations. 

C.l  Single line macros 
A single line macro uses the %def ine preprocessor. Let's suppose you are 
tired of seeing OxOa for the new-line character. You could define a macro 
for this as 

%define newline OxOa 

From that point forward you could simply use newline and get OxOa 
inserted in replacement for the macro. 

Single line macros can have parameters. Let's suppose you wanted 
to define a while loop macro. You might wish to compare a value in a 
register against a value and if a condition is satisfied jump to the top of 
the loop. Here is a possible while macro: 

%define while (cc , label) j mp%+cc label 

The %+ allows concatenation of tokens. After this definition we could use 
code like 

229 



230 

cmp rax , 20 
while ( l , . more) 

APPENDIX C. USING MACROS IN YASM 

C.2 Multi-line macros 
Using a multi-line macro can simply our while macro to include the 
required cmp instruction: 

%macro while 4 
cmp %1 , %3 
j %2 %4 

%endmacro 

The number 4 on the %macro line suggests that 4 parameters are expected. 
You can access each parameter as %1 ,  %2, etc. You can even access the 
number of parameters as %0. 

Now this definition leaves the fairly pleasant feel of creating an in
struction, since the macro invocation does not use parentheses: 

while rax , l ,  20 , . more 

Admittedly this creates an instruction with 4 parameters which must be 
learned, but it simplifies things a little bit. 

How about the standard production of a stack frame: 

%macro function 2 
global %1 

% 1 : push rbp 
mov rbp , rsp 
sub rsp , %2 

%endmacro 

We might as well simplify the ending of a function: 

%macro return 1 
mov rax , %1 
leave 
ret 

%endmacro 



C.2. MULTI-LINE MACROS 

Now we can write a simple program using both macros 

function main , 32 
xor eax , eax 

. loop inc rax 
while rax , l ,  10 , . loop 
return 0 

231 

A fairly useful pair of macros from the yasm manual are multipush 
and mul tipop. These were used earlier in the Sobel example. It makes 
sense to have a pair of macros to push and pop all callee-save registers 
for use in register intensive functions. 

%macro pushsaved 
push rbp 
push rbx 
push r12 
push r13 
push r14 
push r15 

%endmacro 

%macro popsaved 
pop r15 
pop r14 
pop r13 
pop r12  
pop rbx 
pop rbp 

%endmacro 

Now these don't preserve 16 byte stack alignment, so perhaps a better 
choice would be needed for some functions. Maybe you could combine 
the creation of a stack frame with pushing the rest of the registers and 
subtracting from the stack pointer to achieve alignment and room for 
local variables. 



232 APPENDIX C. USING MACROS IN YASM 

C.3 Preprocessor variables 

yasm allows defining preprocessor variables which can be used in macros 
using %ass ign. You could assign a variable i in one spot and modify it 
later: 

%assign i 1 

%assign i i+1 

For more information about yasm macros consult the yasm web site as 
http : //www . tortall . net/proj ects/yasm/manual/html/index . html which 
discusses topics like looping and string length. 



Appendix D 

Sources for more 
information 

D.l  yasm user manual 

http : //www . tortall . net/proj ects/yasm/manual/html/index . html is 
the location of the yasm user manual. This is quite extensive and a good 
reference for learning more about yasm. 

D.2 nasm user manual 

Look at http : I /www . nasm . us/ doc/ for the nasm user manual. This is the 
software which nasm is based on and the documentation is fairly similar 
to the yasm manual. 

D.3 Dr.  Paul Carter's free assembly book 

Dr. Carter has prepared an excellent book on 32 bit x86 programming 
which can be downloaded at http : I /www . drpaulcarter . com/pcasm/. 

D.4 64 bit Machine Level Programming 

Drs. Bryant and O'Hallaron of Carnegie Mellon have provided an excel
lent treatise dissecting how gee takes advantage of the x86-64 architecture 

233 



234 APPENDIX D. SOURCES FOR MORE INFORMATION 

in a document located at 
http : //www . cs . cmu . edu/ -fp/courses/ 15213-s07/misc/asm64-handout . pdf . 

D.5 GDB Manual 

You may find a need to learn more about gdb. Send your browser to 
http : //www . gnu . org/software/gdb/documentation/. 

D.6 DDD Manual 

The ddd manual is located at http : //www . gnu . org/s/ddd/manual/ .  

D.7 Intel Documentation · 

Intel provides excellent documentation about their processors at 
http : //www . intel . com/products/processor/manuals/ .  

You should probably review the architecture in "Intel 64 and IA -32 
Architectures Software Developer's Manual, Volume 1 :  Basic A rchitec

tures" 
The instructions are described in great detail in " Volume 2A : Instruc

tion Set Reference, A-M' and " Volume 2B: Instruction Set Reference, 
N-Z' . These manuals are very useful, but some categorization of instruc
tions would help. There are a bewildering number of instructions and 
looking through an alphabetized list can be overwhelming. 



Index 

_start , 7, 8 

486, 1 15  
8087, 1 15  
8088, 1 15  

add, 47, 52 
Adler-32, 1 12 
and, 62 
array, 99 

address computation, 99 
index, 99 

Atlas, 3 

base case, 94 
binary constant , 13 
binary number, 4, 1 1  

to decimal, 1 1  
bit, 4 

numbering, 1 1  
bit field, 66, 68 
bt - bit test, 67 
btr - bit test and reset , 67 
bts - bit test and set, 67 
byte, 4 

cache, 43 
call instruction, 90 
carry flag, 56 
checksum, 1 12 

cld - clear direction, 86 
close, 135 
cmov, 57 
command line, 109 
comment, 7 
conditional jump, 73 
conditional move, 57 
correlation, 207 
CR3, 37 
cv8, 218 

ddd, 8 
dec, 54 
decimal number 

to binary, 1 1 ,  13 
div, 57 
do-while loop, 80 
dwarf2, 8 ,  218 

echo, 9 
el£64, 8 
else, 75 
equ, 96, 132 
equate, 96, 132 
exclusive or, 64 

for loop, 82 
format string, 225 
function, 89 

parameters, 91  

235 



236 

return value, 91  

gee, 8 
gdb, 8, 45, 47, 53, 54, 100, 217  

breakpoint, 46 
continue, 220 
examine, 34 
list, 46 
next, 220 
nextinstruction, 46, 220 
print , 32, 46 
quit, 219 
run, 46, 219 
single step, 220 

global, 7 
goto, 71 

heap, 29 
hexadecimal, 5 

idiv, 57 
if, 74 
immediate, 45 
imul, 55 
inc, 52 
instruction, 5 

jmp, 71 

kernel, 129 
kernel mode, 129 

large page, 40 
ld, 8 
least significant bit, 1 1  
lodsb, 84 
loop instruction, 82 
lseek, 134 

machine language, 5 
main, 8 
malloc, 104 
memory page, 5 
most significant bit, 1 1  
mov 

from memory, 46 
immediate, 45 
register to register, 49 
sign extend, 48 
to memory, 49 
zero extend, 48 

mul, 55 

nasm, 8 
neg, 51  
not, 61  

open, 132 
or, 63 
overflow, 52, 54, 56 

INDEX 

page directory pointer table, 38, 39 
page directory table, 39 
page table, 39, 40 
permissions, 132 
physical address, 37, 40 
PML4, 37, 38 
pop, 90 
printf, 225, 227 
pseudo-op, 7 
push, 89 

random, 104 
read, 133 
recursion, 94 
register, 4, 43 

r15, 44 



INDEX 

r8, 44 
register preservation, 94 
rep, 83 

cmpsb, 86 
movsb, 84 
scasb 85 ' 

stosb, 84 
repeat, 83 
ret - return, 91 
return address, 90 
rflags, 43, 44, 52 
rip, 43, 72 
rotate, 67 

scanf, 225 
segment 

.bss, 29 

.data, 21 ,  29 

.text , 7 
stack, 29 

set, 67 
shift , 65 
sign flag, 5 1 ,  52, 54, 57, 73 
Sobel, 197 
SSE, 1 15 
stabs, 218 
stack, 89 
stack frame, 92 
status, 9 
std - set direction, 86 
Streaming SIMD Extensions, 1 1 5  
struct, 137 
sub, 54 
system call, 129 

TLB, 40, 41 
translation lookaside buffer, 40 

virtual address, 37 

while loop, 76 
write, 133 

xor, 64 

yasm, 8 
ygcc, 218 
ygdb, 219 
yld, 218 

zero flag, 5 1 ,  52, 54, 57, 73 

237 



CPSIA information can be obtained at www.ICGtesting.com 
Printed in the USA 
LVOW0715582503 12 

274684LV00005B/1 7/P 
II 1 1 1 1 11 

9 7 8 1 466 4 70033 





Con1puters have reached the linlits of 32 bit CPUs. Nearly any conl

puter will run tnore efliciently with 8 gigabytes of IZ.AM which requires 

using a 64 bit operating systern. 

The latest Intel and AMD CPUs have tnore registers and n1ore capabili

ties when running in 64 bit tnode. Achieving high perfornunce using SSE 
and AVX instructions dictates using or writing code in assetnbly language. 

If you know C or C + + ,  this book will expand your skills while clarifY

ing exactly what your con1pilcr does with your code. 

The book progresses fron1 sin1plc concepts to loops, functions, arrays, 

structs, system calls and using C library tl.mctions. Advanced features 

include data structures in assembly and exarnples of high perfonnancc 

programn1ing using SSE and AVX instructions. 

I I  GET THE MOST OUT O F  YOUR COMPUTER I I  
Dr. Seyfarth began his career as a scientific progran1n1er in re

nlote sensing and image processing at NASA in 1 977, using Fortran 

and Assen1bly Language on a variety of 1 6  and 32 bit computers. 

He earned his Ph.D. in Con1puter Science at the University of 

FLorida in 1 989. Since 1 990 he has been a professor at the Uni

versity of Southern Mississippi. 

At Southern Miss Dr. Seyfarth teaches Assen1bly Language, 

C+ + ,  Algorithms,  UNIX, Network Progran1ming, Parallel Al

gorithnls and Con1puter Graphics using OpenGL. His recent 

research efforts have been in in1age processing and network server 

design. 

ISBN 9781 466470033 
90000 > 

9 781 


	Introduction to 64 Bit Intel Assembly Language Programming for Linux
	Preface
	Acknowledgements
	Contents
	Chapter 1: Introduction
	1.1 Why study assembly language?
	1.2 What is a computer?
	1.2.1 Bytes
	1.2.2 Program execution

	1.3 Machine language
	1.4 Assembly language
	1.5 Assembling and linking

	Chapter 2: Numbers
	2.1 Binary numbers
	2.2 Hexadecimal numbers
	2.3 Integers
	2.3.1 Binary addition
	2.3.2 Binary multiplication

	2.4 Floating point numbers
	2.4.1 Converting decimal numbers to floats
	2.4.2 Converting floats to decimal
	2.4.3 Floating point addition
	2.4.4 Floating point multiplication


	Chapter 3: Computer memory
	3.1 Memory mapping
	3.2 Process memory model in Linux
	3.3 Memory example
	3.4 Examining memory with gdb
	3.4.1 Printing with gdb
	3.4.2 Examining memory


	Chapter 4: Memory mapping in 64 bit mode
	4.1 The memory mapping register
	4.2 Page Map Level 4
	4.3 Page Directory Pointer Table
	4.4 Page Directory Table
	4.5 Page Table
	4.6 Large pages
	4.7 CPU Support for Fast Lookups

	Chapter 5: Registers
	5.1 Moving a constant into a register
	5.2 Moving values from memory into registers
	5.3 Moving values from a register into memory
	5.4 Moving data from one register to another

	Chapter 6: A little bit of math
	6.1 Negation
	6.2 Addition
	6.3 Subtraction
	6.4 Multiplication
	6.5 Division
	6.6 Conditional move instructions
	6.7 Why move to a register?

	Chapter 7: Bit operations
	7.1 Not operation
	7.2 And operation
	7.3 Or operation
	7.4 Exclusive or operation
	7.5 Shift operations
	7.6 Bit testing and setting
	7.7 Extracting and filling a bit field

	Chapter 8: Branching and looping
	8.1 Unconditional jump
	8.2 Conditional jump
	8.2.1 Simple if statement
	8.2.2 If/else statement
	8.2.3 If/else-if/else statement

	8.3 Looping with conditional jumps
	8.3.1 While loops
	8.3.2 Do-while loops
	8.3.3 Counting loops

	8.4 Loop instructions
	8.5 Repeat string (array) instructions
	8.5.1 String instructions


	Chapter 9: Functions
	9.1 The stack
	9.2 Call instruction
	9.3 Return instruction
	9.4 Function parameters and return value
	9.5 Stack frames
	9.6 Recursion

	Chapter 10: Arrays
	10.1 Array address computation
	10.2 General pattern for memory references
	10.3 Allocating arrays
	10.4 Processing arrays
	10.4.1 Creating the array
	10.4.2 Filling the array with random numbers
	10.4.3 Printing the array
	10.4.4 Finding the minimum value
	10.4.5 Main program for the array minimum

	10.5 Command line parameter array

	Chapter 11: Floating point instructions
	11.1 Floating point registers
	11.2 Moving data to/from floating point registers
	11.2.1 Moving scalars
	11.2.2 Moving packed data

	11.3 Addition
	11.4 Subtraction
	11.5 Multiplication and division
	11.6 Conversion
	11.6.1 Converting to a different length floating point
	11.6.2 Converting floating point to/from integer

	11.7 Floating point comparison
	11.8 Mathematical functions
	11.8.1 Minimum and maximum
	11.8.2 Rounding
	11.8.3 Square roots

	11.9 Sample code
	11.9.1 Distance in 3D
	11.9.2 Dot product of 3D vectors
	11.9.3 Polynomial evaluation


	Chapter 12: System calls
	12.1 32 bit system calls
	12.2 64 bit system calls
	12.3 C wrapper functions
	12.3.1 open system call
	12.3.2 read and write system calls
	12.3.3 lseek system call
	12.3.4 close system call


	Chapter 13: Structs
	13.1 Symbolic names for offsets
	13.2 Allocating and using an array of structs

	Chapter 14: Using the C stream I/O functions
	14.1 Opening a file
	14.2 fscanf and fprintf
	14.3 fgetc and fputc
	14.4 fgets and fputs
	14.5 fread and fwrite
	14.6 fseek and ftell
	14.7 fclose

	Chapter 15: Data structures
	15.1 Linked lists
	15.1.1 List node structure
	15.1.2 Creating an empty list
	15.1.3 Inserting a number into a list
	15.1.4 Traversing the list

	15.2 Doubly-linked lists
	15.2.1 Doubly-linked list node structure
	15.2.2 Creating a new list
	15.2.3 Inserting at the front of the list
	15.2.4 List traversal

	15.3 Hash tables
	15.3.1 A good hash function for integers
	15.3.2 A good hash function for strings
	15.3.3 Hash table node structure and array
	15.3.4 Function to find a value in the hash table
	15.3.5 Insertion code
	15.3.6 Printing the hash table
	15.3.7 Testing the hash table

	15.4 Binary trees
	15.4.1 Binary tree node and tree structures
	15.4.2 Creating an empty tree
	15.4.3 Finding a key in a tree
	15.4.4 Inserting a key into the tree
	15.4.5 Printing the keys in order


	Chapter 16: High performance assembly programming
	16.1 General optimization strategies
	16.2 Use a better algorithm
	16.3 Use C or C++
	16.4 Efficient use of cache
	16.5 Common subexpression elimination
	16.6 Strength reduction
	16.7 Use registers efficiently
	16.8 Use fewer branches
	16.9 Convert loops to branch at the bottom
	16.10 Unroll loops
	16.11 Merge loops
	16.12 Split loops
	16.13 Interchange loops
	16.14 Move loop invariant code outside loops
	16.15 Remove recursion
	16.16 Eliminate stack frames
	16.17 Inline functions
	16.18 Reduce dependencies to allow super-scalar execution
	16.19 Use specialized instructions

	Chapter 17: Counting bits in an array
	17.1 C function
	17.2 Counting 1 bits in assembly
	17.3 Precomputing the number of bits in each byte
	17.4 Using the popcnt instruction

	Chapter 18: Sobel filter
	18.1 Sobel in C
	18.2 Sobel computed using SSE instructions

	Chapter 19: Computing Correlation
	19.1 C implementation
	19.2 Implementation using SSE instructions
	19.3 Implementation using AVX instructions

	Appendix A: Using gdb
	A.1 Preparing for gdb
	A.2 Starting
	A.3 Quitting
	A.4 Setting break points
	A.5 Running
	A.6 Printing a trace of stack frames
	A.7 Examining registers
	A.8 Examining memory

	Appendix B: Using scanf and printf
	B.1 scanf
	B.2 printf

	Appendix C: Using macros in yasm
	C.1 Single line macros
	C.2 Multi-line macros
	C.3 Preprocessor variables

	Appendix D: Sources for more information
	D.1 yasm user manual
	D.2 nasm user manual
	D.3 Dr. Paul Carter's free assembly book
	D.4 64 bit Machine Level Programming
	D.5 GDB Manual
	D.6 DDD Manual
	D.7 Intel Documentation

	Index

